The Science Behind Laser Tattoo Removal

2017.07.17

Athanasiadis Anastasios-Polykarpos

 $\Delta MELIS 2017$

Lasers in Medicine and Life Sciences

Contents

- Tattoo Physics
- Laser Tattoo Removal
- Types of Lasers
- Human Body Contribution
- Pros & Cons

Tattoo Physics

Tattoo ink

✓ <u>Pigment</u>

✓ <u>Carrier</u> (a substance or a mixture)

 Ingredients of the Carrier ✓ Ethyl alcohol (ethanol) ✓ Purified water ✓ Witch hazel ✓ Listerine ✓ Propylene glycol ✓ Glycerin (glycerol)

Lasers in Medicine and Life Sciences Szeged

Tattoo Physics

attoo ink pigments

iron oxide (wustite or magnetite crystals), carbon

iron oxide (ochre)

iron oxide (rust), cinnabar, cadmium red

chrome yellow, cadmium yellow, curcuma yellow

chrome oxide, malachite

cobalt blue, lapis lazuli, azurite

quinacridone, carbazole, manganese violet

titanium dioxide, zinc oxide, lead carbonate, barium sulfate

Ingredients of the Pigment

Tattoo Physics

Tattooing machine
✓ Pierces at a frequency of
50-3.000 times per minute
✓ Reaches the Dermis
✓ Causes wounds
✓ Inflammatory process begins

Tattoo Physics

The Inflammatory Process

Immune system cells (macrophages) roll in the site ✓ They **respond** to the <u>substance</u> invading the body ✓ They clean up by engulfing the ink particles

The outcome

✓ Some are **carried back** with the ink particle inside them, into the lymph nodes

✓ Others **remain in the dermis**

Some no-engulfed ink particles are suspended in the gel-like **matrix** of the dermis

Others get soaked into dermal cells (fibroblasts)

Tattoo Physics

That is why the tattoo is permanent!

• But how can we get rid of it?

Laser Tattoo Removal

Two ways of removing a tattoo

Laser 1.

2. Plastic surgeon

Laser Tattoo Removal

- What is the **plan**?
 - Make the ink particles' size as small as the blood cells
 - ✓ Macrophages will be able to engulf them

ELIS

Laser Tattoo Removal

• What can we achieve by using <u>Laser?</u> ✓ Photothermolysis

1. Heat up very fast

2. Only the one side grows due to thermal expansion

Lasers in Medicine and Life Sciences Szeged

Laser Tattoo Removal

3. The other side remains cool

4. So, huge internal stresses are caused

Lasers in Medicine and Life Sciences

Szeged

Laser Tattoo Removal

5. These stresses rip apart the particle

Lasers in Medicine and Life Sciences Szeged

Laser Tattoo Removal

LIS

Lasers in Medicine and Life Sciences Szeged

Laser Tattoo Removal

 The faster you can heat up one side relative to the other, the more likely you can rip apart the ink.

AMELIS

Laser Tattoo Removal

 The white effect is called frosting and it only lasts for a few seconds. It is basically a shock wave that is happening at the particle level.

Q-Switch Yag Laser

- <u>Nd:YAG</u> (neodymium-doped yttrium aluminum) garnet)
- Nd:YAG laser has <u>λ=1064 nm</u> and has the capability to **reach deeper layers of skin** tissue than other types of lasers.
- Q-switching makes the laser to produce laser pulses.
 - Nd:YAG produces 2 wavelengths
 - $\sqrt{\lambda_1}$ =1064 nm and a second beam of λ_2 = 532 nm which is useful for superficial skin lesions.
- Blue, grey and black tattoos can be removed
- Typical settings are
 - ✓ pulse duration: 10 nanoseconds,
 - ✓ output energy: 300-500mj

PiQo4 Laser

- *Pi* is short for a picosecond
- Q is short for Q-switched
- 4 denotes that this laser produces <u>4 different</u> wavelengths (1064nm, 532nm, 585nm and 650nm)
- The option of <u>larger spot sizes</u> up to 15.5mm

Human Body Contribution

- The **further away from your heart** that a tattoo is on your body, the **longer the process** can take.
- Tattoo removal **results are individualized** for everyone and with each tattoo.
- Your **health** plays a big role on the results you get.

Pros & Cons

• Pros:

✓ Relatively Painless ✓ It's Non-Invasive ✓ High Success Rate with minimal side effects

Cons:

✓ Multiple sessions may be required May Cause Skin Irritation Risk of Infection ✓ Uneven Skin Color ✓ High Cost

Lasers in Medicine and Life Sciences Szeged

Thank you for your attention!

