MELIS Lasers in Medicine and Life Sciences

Advanced summer school for undergraduate or postgraduate students of medicine and physics

July 2017

SZÉCHENYI 202

Fund

'ELITEAM'- ESTABLISHMENT OF THE ELI INSTITUTE AT THE UNIVERSITY OF SZEGED: FOUNDATION OF INTERDISCIPLINARY RESEARCH IN THE FIELD OF LASERS AND THEIR APPLICATIONS

LASERS FOR SURFACE MODIFICATION OF DENTAL IMPLANTS

Kinga TURZÓ, PhD

University of Szeged Faculty of Dentistry

HUNGARIAN

Government

European Union European Social Fund

INVESTING IN YOUR FUTURE

www.stoma.u-szeged.hu

Main topics

1. Introduction, Faculty of Dentistry, research program

- Biomedical sciences and our research field
- Main characteristics of dental implants
- Surface aspects of biomaterials, biorecognition

2. Surface modifications enhancing biointegration/osseointegration

- Physical-chemical surface modifications
- Laser ablation of Ti surfaces, background/literature overview

3. Laser ablation of Ti discs

- Bereznai et al., *Biomaterials,* 2003
- A. Györgyey et al., MSEC, 2013
 - SEM, AFM and XPS studies
 - In vitro cell culture experiments MG63 osteoblast cells

Main topics

1. Introduction, Faculty of Dentistry, research program

- Biomedical sciences and our research field
- Main characteristics of dental implants
- Surface aspects of biomaterials, biorecognition

- 2. Surface modifications enhancing biointegration/osseointegration
 - Physical-chemical surface modifications
 - Laser ablation of Ti surfaces, background/literature overview

- 3. Laser ablation of Ti discs
 - Bereznai et al., Biomaterials, 2003
 - A. Györgyey et al., *MSEC*, 2013:
 - SEM, AFM and XPS studies
 - In vitro cell culture experiments MG63 osteoblast cells

Introduction

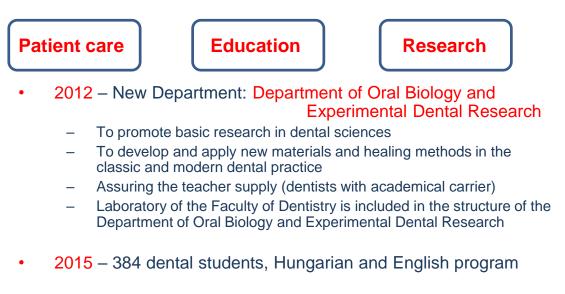
- 1989 diploma in Physics, University of Bucharest (Romania)
- 1991 2001, JATE, Department of Biophysics, teaching and research
- 2000 Ph.D. "Delayed fluorescence of bacterial reaction centers", supervisor: Prof. Péter MARÓTI
- 2001 Alfred Kastler grant: Université Louis Pasteur, Strasbourg (France)

RESEARCH IN DENTAL IMPLANTOLOGY

- 2001: research fellow at Department of Dentistry and Oral Surgery (University of Szeged, Medical Faculty): mainly research work, Prof. Dr. András FAZEKAS
- 2002 teaching and developing dental subjects: Dental materials and technology, Oral biology, Dental inplantology, Physics for dental students, Dental biometry and evaluation of research results, Biomaterials and biocompatibility.
- 2004 establishing the Research in Dental Medicine Program, Graduate School of Clinical Sciences (University of Szeged)
- Supervisor of "Biointegration of alloplastic materials" research topic.
- PhD school: 9 PhD students, 5 of them already defended their PhD

Scientific parameters:

- 25 publications, 4 book chapters
- IF: 43,377; citation index: 178; Hirsch index: 8
- Supervisor of 11 grants (EU5, GVOP, TÉT, ETT, FP7)
- 2003 György BÉKÉSY postdoctoral fellowship
- 2011-2014 János BOLYAI fellowship, Hungarian Academy of Sciences
- 2014 habilitation, School of Clinical Sciences (University of Szeged)
- 2015 –dean of the Faculty of Dentistry


Laboratory of the Faculty of Dentistry Department of Oral Biology and Experimental Dental Research

 1949 – year instruction started, Department of Dentistry and Oral Surgery, part of the Faculty of Medicine (WHO)

2007 - Faculty of Dentistry

- 5 Departments, 46 academic staff, 23 medical/dental assistants, 180 dental students (Hungarian and from abroad).
- All the academic staff takes part in research with different specialties (PhD program of the Faculty).

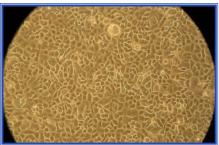
XE-100 PSIA AFM, Nikon Eclipse 80i optical microscope, Leica RM2255 rotary microtome, UV-visible spectrophotometer (ThermoSpectronic), Thermocycler (BioRad), Nikon TS100 invert microscope, and appliances for cell-culture experiments

Advanced SPM for Small Samples

Investigation methods

1. Surface science methods

- Atomic force microscopy (AFM): roughness (R_a)
- Scanning electron microscopy (SEM)
- X-ray photoelectron-spectroscopy (XPS): chemical composition of Ti surface
- X-ray diffraction (XRD): crystalline structure of the implant


2. In vitro cell culture studies

Determination of the attachment (24 h) and proliferation (72 and 168 h) of human oral epithelial (or fibroblast) cells via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and alamarBlue (AB) assays, alkaline phosphatase quantification (ALP) and scanning electron microscopy (SEM)

3. In vivo animal experiments

Investigation of the osseointegration of Ti samples (discs or implants) in rabbit femur or Vietnamese pot bellied pigs calvarias.

Research group at the Faculty of Dentistry Department of Oral Biology and Experimental Dental Research

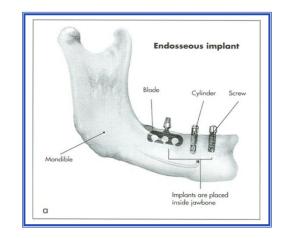
Biointegration of alloplastic materials

- Physical-chemical and biochemical surface modifications of titanium dental implants improving their biointegration
 - Several publications and two PhD thesis (I. PELSŐCZI K, D. MATUSOVITS, Á. GYÖRGYEY, R. MASA)
- Effects of fluoride containing agents on titanium
 - Several publications and one PhD thesis (A. STÁJER, I. BARRAK)
- Effects of chemical agents used for decontaminating titanium implants (periimplantitis)
 - Several publications and one PhD thesis (K. UNGVÁRI, A. VENKEI)

University of Szeged, Graduate School of Clinical Sciences, Research in Dental Medicine Program

Head: : Prof. János MINÁROVITS, PhD., DSc.

Research Program


Biointegration of alloplastic materials for replacement of missing parts of human body.

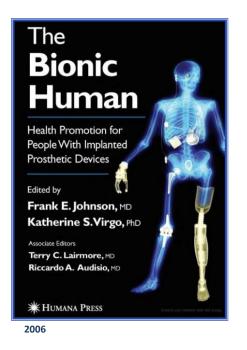
- Our studies relate to replacements of body structures in case of which the biological function requires significant load-bearing capability.
- Example for that are dental implants and artificial hip-joint replacements.
- They are generally made from titanium.

S7ÉCHEN

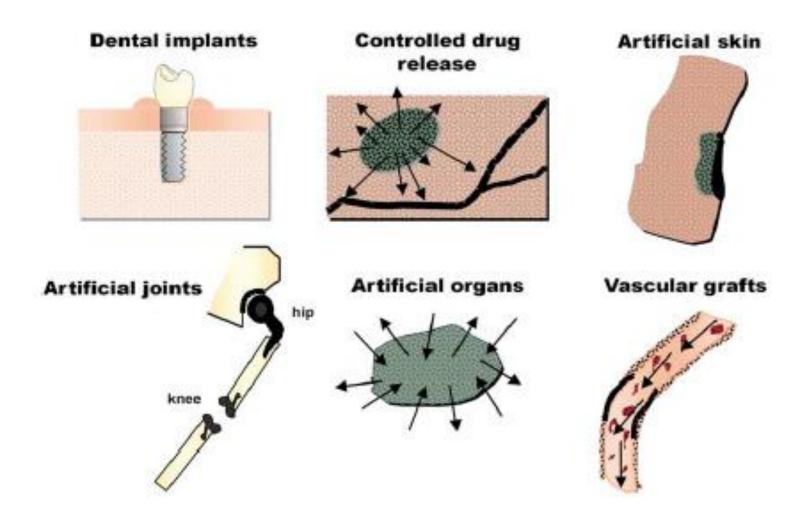
• Their biological integration depends on -among others- the surface structure of the metal.

Seneral value of these studies: basic research highly applicable for industrial and biomedical use.

Biomedical Science


Longer age, more people with missing or ill organs or tissues

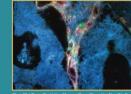
we need more biomaterials replacing missing parts of human body!


Biomaterial Market (USA):

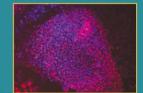
- 1988 11 million Americans (about 4.6% of the civilian population) had at least one implant
- 1991 2 billion \$ for implants and instrumentation in orthopedics (1 billion \$ metal joint prostheses)
- 1996 3.6 million orthopedic operations per year, four of ten involved metallic implants (reduction of a fracture and internal fixation)
- 2002 6 billion \$ budget for biomaterials
- 2007 4.8 billion \$ market for dental implants and bone grafting.
- Study of the biointegration of alloplastic materials and development of biocompatible materials became one of the most important fields of research in biomedical science!

Biomaterial (alloplastic material)

Dental implants ---- most frequent!



Biomaterials

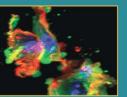

Limited Edition Poster © Elsevier

nun-Wei Peng, Xiu-Li Liu, Chuang Chen, Xiong Liu, Xue-Qin Yang, ai-Wen Pang, Xiao-Bo Zhu, Yan Li, sue 11, p. 2907

enedikt Webet, Roman Schoenauet, Francesca Papadopulos, eter Modregger, Silvia Peter, Marco Stampanoni, Arabella Mauri, Joardo Mazza, Julia Gorelik, Irina Agarkova, Laura Frese, Iristian Breymann, Oliver Kretschmar, Simon P. Hoerstrup, eura 36 e 9630

A. Wang, Z. Tang, I. H. Park, Y. Zhu, S. Patel, G. Q. Daley, S. Li Issue 22, p. 5023

Nan Li, Li-na Niu, Yi-pin Qi, Cynthia K.Y. Yiu, Heonjune Ryou, Dwayne D. Arola, li-hua Chen, David H. Pashley, Franklin R. Tay, Issue 34, p. 8743


a Geng, Huaming Fang, Farzin Haque, Le Zhang, Peixuan Guo, sue 32, p. 8234

 Yonggang Pang, Xiaoli Wang, Dongkeun Lee, Howard P. Greisl Journal 15, p. 3776

2003

IF: 2.903

Ohm D. Krishna, Amit K. Jha, Xinglao Jia, Kristi L. Kiick, Issue 27, p. 6412

Ires Hurtado, Jared M. Cregg, Han B. Wang, Dane F. Wendell, Itin Oudega, Ryan J. Gilbert, John W. McDonald, e 26 p. 6068

Mahdieh Bashoor-Zadeh, Gamal Baroud, Marc Bohner, Issue 27, p. 6362

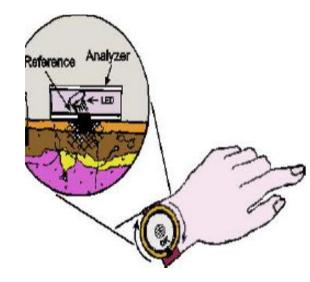
IF: 8.557

Motskin, Karin H. Müller, Christel Genoud, r G. Monteith, Jeremy N. Skepper, n. 9470

hang Ho Seo, Katsuko Furukawa, Kevin Montagi leonuk Jeong, Takashi Ushida, sula 36 n. 9568

2011 – The Year in Images

www.biomaterialsjournal.com



Biological surface science -BioSS

2002- Bengt KASEMO, Department of Applied Physics, Göteborg University (*Surface Science 500:656-677*).

- Properties and processes at interfaces between synthetic materials and biological environments are investigated.
- Biofunctional surfaces are fabricated.

Research areas constituting a strong driving force for the current rapid development of BioSS

- Medical implants in the human body
- Biosensors and biochips for diagnostics
- Tissue engineering
- Bioelectronics
- Artificial photosynthesis
- Biomimetic materials

The successful biointegration of implants depends on many factors


- Bulk and surface characteristics
- Construction (design)
- Biocompatibility
- Applied surgical technique
- General health condition and life-quality of the patient

Reliability of a biomaterial:

f – probability of failure

Usually, there are multiple modes of failure, the total reliability: $r_t = r_1 \cdot r_2 \cdot \dots \cdot r_n$ where $r_i = 1 - f_i$

The alloplastic material functions in intimate contact with the surrounding tissues for any period of time and does not have any adverse/damaging effect on the body as a whole.

Biocompatibility:

"Acceptance of an artificial implant by the surrounding tissues and by the body as a whole."

J.D. Bronzino, Ed.: *The Biomedical Engineering Handbook*, CRC and IEEE Press, 1999

"Biocompatibility is a dynamic, always changing phenomenon."

J.E. Lemons: Journal of Prosthetic Dentistry, 2001

Biocompatibility tests and standards

TABLE 5-1. Dentistry-Preclinical Evaluation of Medical Devices Used in Dentistry-Test Methods*

	Group I Primary (initial) Tests					Group II Secondary Tests						Group III Preclinical Usage Tests			
Nature of Contact	Duration of Contact	Cytotoxic- ity Test ISO XXXX Clauses 6, 7	Cytotoxic- ity Test ISO 10993-5	Cytotoxic- ity Test ISO XXXX Annex A	Genotox- icity Test ISO 10993-3 Clause 4	Acute Sys- temic Toxicity— Oral Appli- cation ISO 10993-11 Clause 6.5.1	Acute Sys- temic Toxicity— Application by Inhala- tion ISO 10993-11 Clause 6.5.3	Subchronic Systemic Toxicity— Oral Appli- cation ISO 10993-11 Clause 6.7.1	ISO 10993-10	Sensitiza- tion ISO 10993-10 Clauses 6.2, 6.3	Subchronic Systemic Toxicity— Application by Inhala- tion ISO 10993-11 Clause 6.7.3	Local Ef- fects After Implanta- tion ISO 10993-6 Clauses 4, 5, 6	Pulp and Dentine Usage Test ISO XXXX Clause 8	Pulp Cap- ping and Pulpotomy Test ISO XXXX Clause 9	Endodontic Usage Test ISO XXXX Clause 10
Surface-	≤24 h	х	х				х	2	х	х					
Contacting	24 h to 30 days	X	Х				X	х	X	X	х				
Devices	>30 days	X	Х		х		х	x	X	x	x				
External	≤24 h	x	х	х			x		х	х					
Communicating	24 h to 30 days	X	х	X	х		x	х	x	x	x	х	x	х	~
Devices	>30 days	Х	х	x	x	х	X	x	x	x	x	â	Â	x	x
Implant	≤24 h	х	х						x	х				~	~
Devices	24 h to 30 days	X	X		x			x	x	V		×		X	X
	>30 days	X	x		x			x	x	X		X		X	X

*X in the columns indicates test that shall be considered for use. ISO XXXX in the column heading indicates that the official number will be designated when the ISO grants approval.

This Draft International Standard was developed by a Technical Committee of the International Organization for Standardization (ISO). The American National Standards Institute (ANSI), the U.S. member of ISO, participates in its technical program and administers secretariats of various technical committees and subgroups. ANSI is also ISO's exclusive sale agent in the United States for all ISO standards, Draft International Standards, and Committee Drafts. The excerpt from this Draft International Standard is being distributed by W.B. Saunders Company through an arrangement with ANSI.

This is not an approved ISO International Standard. It is distributed for review and comment and may be modified during this process. It is subject to change without notice and may not be referred to as an International or ISO Standard until published as such.

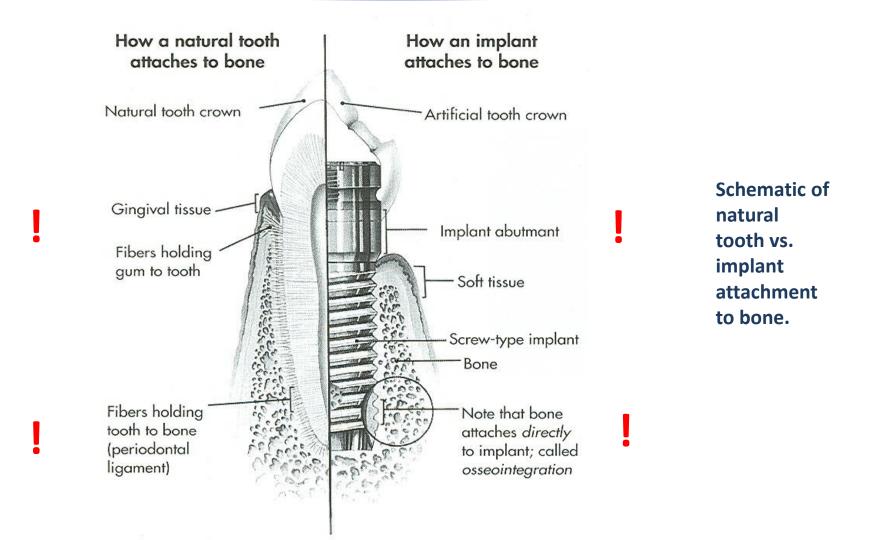
Copyright by the International Organization for Standardization. No part of this publication may be copied or reproduced in any form, electronic retrieval system or otherwise, without the prior written permission of the American National Standards Institute, 11 West 42nd Street, New York, NY 10036, which holds reproduction rights in the United States.

Anusavice, K.J. (Ed.), (1996) *Phillips' Science of Dental Materials*, 655-662, W.B. Saunders Company, 10th Edition, Philadelphia, Pennsylvania, USA

Importance of biocompatibility in dentistry/implantology

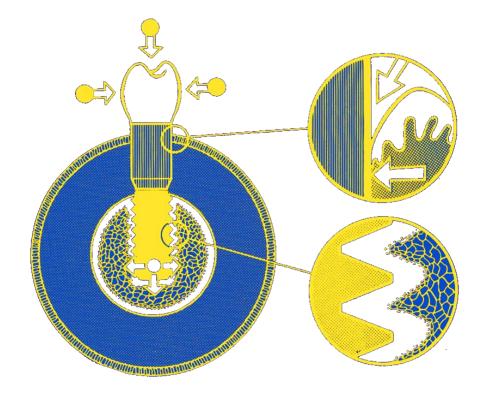
The main challenges in dentistry for centuries have been the development and selection of biocompatible prosthetic materials that can withstand the adverse conditions of the oral environment.

600 A.D. Mayans used seashell segments for implant s



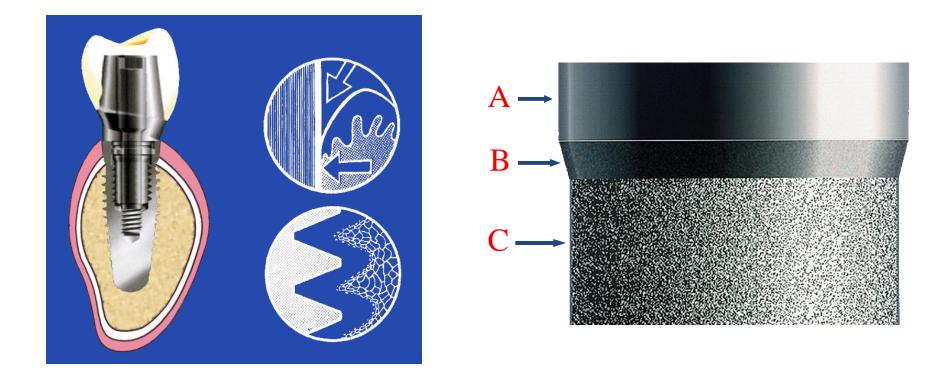
- Oral cavity represents a multivariant external environment with a wide range of circumstances:
 - Foods, abrasion, pH (3-9), temperatures from 5 to 55°C, high magnitude masticatory forces, bacteria, etc.

Why do we need an optimized dental implant (surface)?


O'Brien, W.J. (2002). Dental Materials and Their Selection, Quintessence

The success and long-term prognosis of endosseous implants depend on...

- Osseointegration

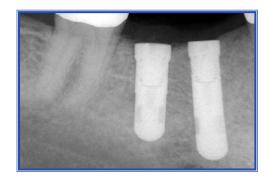

 (anchorage in the host bone)
- Gingival attachment
 (periimplant mucosal seal)
- Appropriate transmission
 of masticatory force
 (load transfer capacity)

Functionally three different parts

A - smooth surface for epithelial attachment and to prevent plaque formation

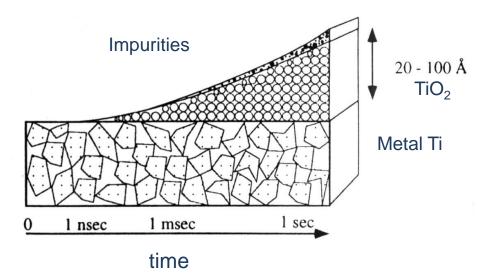
- B machined, oblique part for proper connective tissue attachment
- C rough surface, developed for anchorage in the bone

Types of dental implants

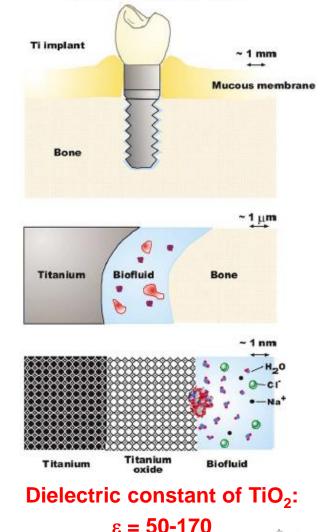


Favorable properties of titanium

- Light material (atomic weight: 47.88)
- Low density (4.43 g/cm³; almost as strong as steel, but 45% lighter)
- Low heat conductivity (21.9 J/(m·s·K))
- Easy to fabricate
- Good radiographic image
- Exceptional corrosion resistance
- High degree of biocompatibility



Widely used as a medical implant material (biomaterial) for fixating or replacing hard tissue in dentistry, implantology, oral and maxillofacial surgery.


Corrosion resistance and biocompatibility of titanium

TiO₂ has one of the highest heats of reaction:

∆H = -912 kJ/mol

Is very adherent to the parent titanium and impenetrable to oxygen.

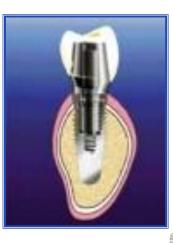
Ti implant - bone interface

SZÉCHENYI

Osseointegrated implants replacing teeth

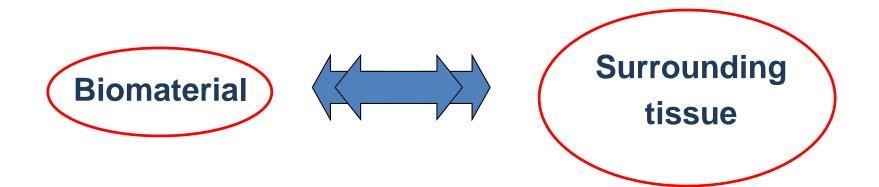
longer age, more people with missing teeth

- Hungary: ~ 300.000 yearly - EC: ~ 2 million



up-to-date demand: optimization of osseointegration

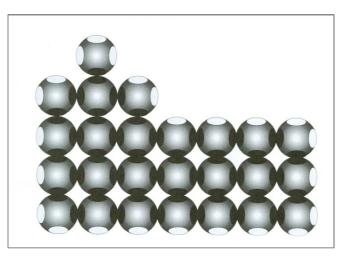
- reducing the 3-6 month healing period

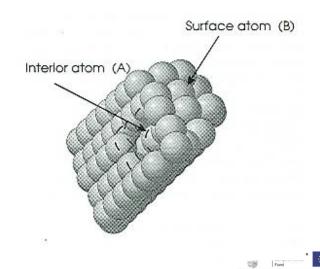


Biointegration / Osseointegration

Interaction between the biomaterial and surrounding tissues

Place of interaction: INTERFACE

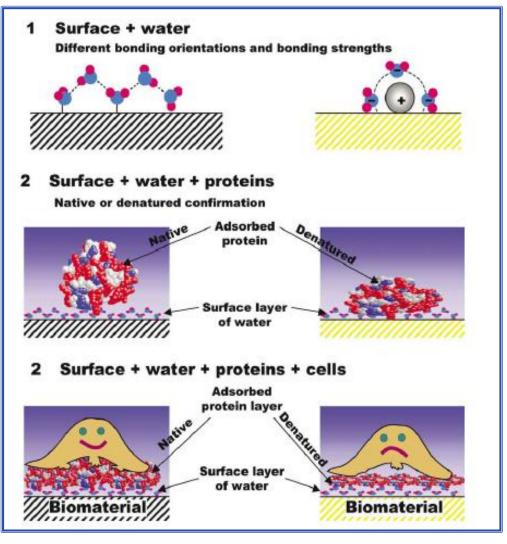



Surface properties of materials

- The surface region has 4 important characteristics:
 - is uniquely reactive
 - different from the bulk
 - readily contaminate
 - variable or mobile.
- Important question in biocompatibility:
 - how the device or material "transduces" its structural makeup to direct or influence the response of proteins, cells and organisms?

Biorecognition:

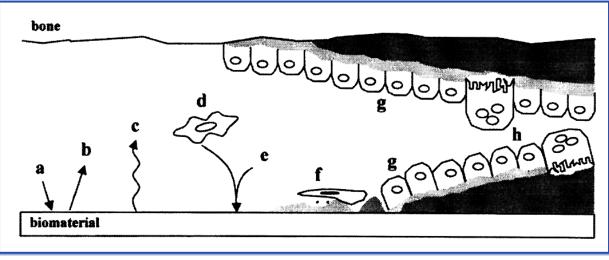
This transduction occurs through the surface structure: the body "reads" the surface structure and responds.


Biorecognition

Events following the implantation of a medical implant:

ns time scale: the first molecules to reach the surface are water molecules, water shell is formed.

us-ms time scale: the water shell that is formed affects the protein interactions, this continues for much longer times. Conditioning film is formed.


s time scale: cells reach the surface. Their surface interactions take place via the protein coating whose properties are determined by the surface and water adlayer properties.

Overview of the osseointegration process

Puleo & Nanci, Biomaterials, 1999

- a. Protein adsorption from blood and tissue-fluid
- b. Conformational change and desorption of proteins, formation of a conditioning film.
- c. Electrochemical modification of the implant surface and release of particles, ions (Ca, P).

- d. Inflammatory and connective tissue cells arrive to the surface.
- e. Release of matrix proteins, and selective adsorption of proteins.
- f. Adhesion of osteogenic cells and formation of lamina limitans (afibrilar interfacial zone).
- g, h. Formation of new bone.

 $\sim 2 \mu m/day$

processes can be controlled at molecular and cellular level

by modification of biomaterial (implant) surface

physical-chemical methodsbiochemical methods

Main topics

1. Introduction, Faculty of Dentistry, research program

- Biomedical sciences and our research field
- Main characteristics of dental implants
- Surface aspects of biomaterials, biorecognition

2. Surface modifications enhancing biointegration/osseointegration

- Physical-chemical surface modifications
- Laser ablation of Ti surfaces, background/literature overview
- 3. Laser ablation of Ti discs
 - Bereznai et al., *Biomaterials,* 2003
 - A. Györgyey et al., *MSEC*, 2013:
 - SEM, AFM and XPS studies
 - In vitro cell culture experiments MG63 osteoblast cells

K. Turzo: Surface aspects of titanium dental implants. *In: Biotechnology /Book 3*, InTech Open Access Publisher, ISBN 978-953-51-0151-2, pp. 135-158, 2012

BIOTECHNOLOGY MOLECULAR STUDIES AND NOVEL

APPLICATIONS FOR IMPROVED QUALITY OF HUMAN LIFE

Edited by Reda Helmy Sammour

Surface Aspects of Titanium Dental Implants

Kinga Turzo University of Szeged, Faculty of Dentistry, Hungary

9

1. Introduction

This book chapter presents a brief description of a new emerging field of science, the biological surface science and stresses its importance in the field of alloplastic materials and dental implants. It is not intended to present a comprehensive review of the field, but rather to indentify some important trends and directions in the surface modifications of tilanium (Ti) dental implants targeting the improvement of their bio/ossecintegration (second subchapter). The third subchapter outlines the impact of fluoride on surfaces of titanium implants or other dental devices. The fourth one will give an overview of the effects of some chemical cleaning agents on titanium implant surfaces. The interaction between Ti and fluoride containing prophylactic agents or chemical cleaning agents can result in a beneficial or/and destructive alteration of the surface of Ti dental appliances. The objective of our studies was to characterize these specific modifications and alterations of Ti surfaces. The fifth subchapter focuses on the relation between biological surface science and dental implants related research.

2. Improving osseointegration of titanium implants by surface modifications - latest trends

These days much effort goes into the design, synthesis, and fabrication of Ti dental implants to obtain a long term (lifelong) secure anchoring in the bone. First of all, implants must carry and sustain the dynamic and static loads they are subjected to. The bulk structure of the material governe this ability. Evidently, it is important to achieve a proper function with the shortest possible healing time, with a very low failure rate, and with minimal discomfort for the patient. These factors are important for cost reasons, too.

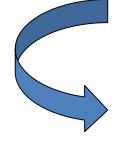
The success and the long-term prognosis of dental implants depend mainly on three factors: 1) on the anchorage of the artificial root in the host bone, i.e. on the osseointegration; 2) on the peri-implant mucosal seal; 3) finally on the adequate loading of the implant, transmitted by the abutment, i.e. the biomechanical factor (Figure 1.) (Adell et al., 1981; Brånemark, 1983a; Davies, 1989).

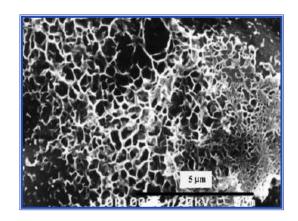
During osseointegration, which is the formation of a direct connection between the living bone and the surface of the load-carrying implant, strong links must be formed between the biomaterial and the surrounding bone tissue (Binon et al., 1992; Cochran, 1999; Morra & Cassinelli, 1997; Olefjord & Harsson, 1993).

Goal of physical-chemical methods

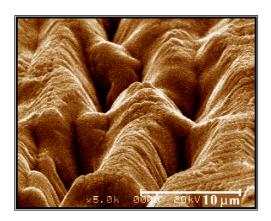
To modify the charge, chemical composition and morphology of the surface

- to increase the adhesion of cells and the electrostatic interaction of the surface with biomolecules
- to insure the optimal surface for the biomolecules, proteins and CaP crystals in the process of osseointegration




Physical-chemical methods

- Chemical surface reactions (e.g.: oxidation, acid-etching)
- Sand blasting
- Ion implantation
- Pulsed laser deposition
- Coating the surface (e.g. CaP)
- Laser ablation

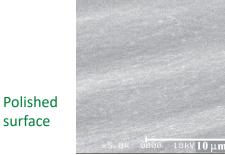


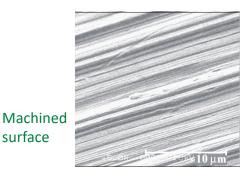
Surfaces with modified roughness

M. Szekeres et al: *Colloid and Polymer Science* 283:587-592, 2005

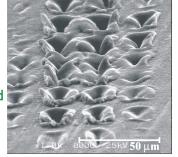
M. Bereznai et al: *Biomaterials* 24, (23):4197-4203, 2003

Importance of surface roughness


- Osseointegration is enhanced on rough, micro structured surfaces, as the contact area will be bigger (Cochran et al., 1998; Joob-Fancsaly et al., 2004; Santis et al., 1996).
- Mechanical (morphological) fixation will help the bone ingrowth.

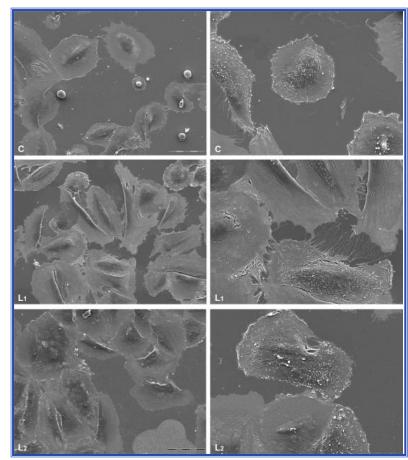

Influence of roughness on cells:

- Epithelial cells attach and proliferate better on smooth surfaces (polished R_a < 0.5 mm) than on rough, acidetched and sand-blasted surfaces (Klinge & Meyle, 2006, Baharloo et al., 2005).
- Fibroblast cells attach in the same way on both surface (Klinge & Meyle, 2006)
- Osteoblast cells show an increased metabolical activity (osteocalcin production and alkaline phosphatase activity) on rough surfaces (Boyan et al.,1998; Meyle, 1999).


Meyle et al., 1999: the roughness of the surface control the cell activity and therefore determine the helaing process!

- Animal experiments (rabbit) demonstrated that the roughness and the thickness of TiO₂ layer influences the adhesion of bone in the early stage of implantation (1-7 weeks; Larsson et al., 1994; Larsson et al., 1996).
- Acid etched, sand blasted and Ti plasma prayed surfaces are typically rough surfaces, used at almost every implant. *In vitro and in* vivo studies prove their efficiency (Buser et al. 1991; Wennerberg et al., 1997; Wong et al., 1995).

Rough surface, ablated with 18 ns ArF-laser


Application of lasers Literature overview I.

Laser type	Application	Surface	<i>In vitro</i> results	<i>In vivo</i> results	References	
Er:YAG 2940 nm	 Irradiation, peri- implant treatment shaping the place of the implant 	Ti discs, different surfaces (SA, TPS, HA, machined), glass	Bacterial studies	Animal and human experiments	 M. Kreisler et al. J Periodontol 2002 S. Sennhenn-Kirchner et al. Lasers Med Sci 2009 G. Kesler et al. Int J Oral Maxillofac Implants 2006 F. Schwarz et al. Clin Oral Impl Res, 2005 	
Er,Cr:YSGG 2780 nm	• Irradiation, peri- implant treatment	Ti discs, SLA surface	Cell culture studies (human osteoblast SaOs- 2) MTT	Supragingival plaque biofilm, intraoral studies (3 patients)	• F. Schwarz et al. J Periodontol, 2006	
Diode GaAlAs 830 nm LLLT: low-level laser therapy	 Irradiation, re- osseointegration Direct irradiation of cells (fibroblast and osteoblast) 	CP Ti implants	 SEM studies cell culture TGF-β₁ and osteokalcin production Attachement and proliferation of osteoblasts increased 	 Bone-to-implant contact - BIC increased Re-osseointegration rabbit tibia, dog studies 	 C.L. Pereira et al. Int J Oral Maxillofac Implants, 2009 B.P. Campanha et al. Photomedicine and Laser Surgery, 2010 J.A. Shibli et al. Clin Oral Impl Res, 2006 C. B. Lopes et al. Photomedicine and Laser Surgery, 2005 M. Khadra et al. Clin Oral Impl. Res, 2005 M. Khadra et al. Biomaterials, 2005 	
CO ₂ 10600 nm	 Irradiation, peri- implant treatment comparison with Nd:YAG laser 	CP Ti implants TPS implants	 SEM studies thermical studies 	Beagle dogs Hystology, histomorphometry and X-ray	• C-Y Park et al. <i>J Oral Maxillofac Surg</i> 2005 • H. Deppe et al. <i>Int J Oral</i> <i>Maxillofac Implants</i> 2001	

Diode laser treatment of cells

- Osteoblast and fibroblast cells irradiated with GaAlAs diode laser
- M. Khadra et al. *Biomaterials*, 2005; 26:3503-3509
- M. Khadra et al. *Clin Oral Impl Res*, 2005; 16:168-175
- Laser parameters:
 - 830 nm, 84 mW, 1.5-3 J/cm²
 - 9 cm distance between laser and cell layer
 - 10 min, 3 consecutive days
 - HOB –human osteoblast: M. Khadra et al. Biomaterials, 2005; 26:3503-3509
 - HGF –human gingival fibroblast: M. Khadra et al. Clin Oral Impl Res, 2005; 16:168-175
- HOB: 3 J/cm² fluence was increasing significantly the production of osteokalcin and TGF-β₁ production.
- HGF: the irradiated cells were forming more effectively clones.

SEM images of fibroblast cells after 3 hours after attachment. C: control L1 : laser treatment , fluence: 1.5 J/cm² L2: laser treatment , fluence: 13 J/cm²

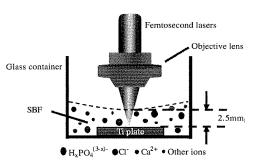
Scale = 25 µm (left side)

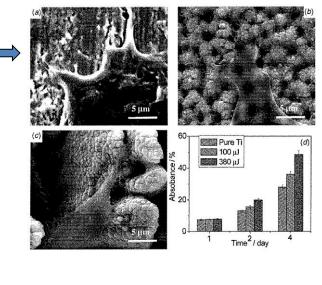
Scale = 10 μ m (right side)

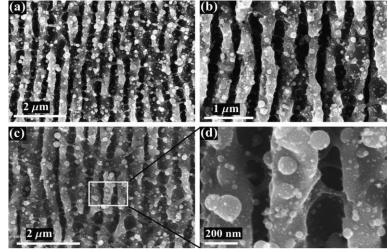
Application of lasers Literature overview II.

Laser type	Application	Surface	<i>In vitro</i> results	<i>In vivo r</i> esults	References
Nd:YAG 1064 nm 532 nm 355 nm	 Irradiation Ablation* 	 Ti alloys, Ti6Al4V Sand blasted surface CP Ti dental implants Ti plates 	 Microbial ablation SEM, XPS OM, AFM, XRD 2T3 osteoblast ,MTT measurements 	 Rabbit femur, tibia, torque tests Histomorphometry 	 •R. Giannini et al. <i>Clin Oral Impl</i> <i>Res</i>, 2006 •R.S. Faeda et al. <i>Braz Oral Res</i>. 2009 •R.S. Faeda et al. <i>J Oral</i> <i>Maxillofac Surg</i>, 2009 •C. Hallgren et al. <i>Biomaterials</i> 2003 •M. Marticorena et al. <i>Journal of Physics: Conference</i> <i>Series</i> 2007 •M.W. Turner et al. <i>Applied</i> <i>Surface Science</i> 2005 •M Trtica et al. <i>Applied Surface Science</i>, 2006 •N. Mirhosseini et al. <i>Applied Surface Science</i> 2007
20 ns KrF excimer 248 nm	Pulsed laser deposition (PLD)	HA coatings on Ti6Al4V surface	SEM, AFM, XPS, XRD Nanoindentation	-	• G.P. Dinda et. al. <i>Acta Biomaterialia</i> 2009
50 fs laser 800 nm	 Irradiation in SBF Ablation (1 atm) Irradiated area: 100-1200 μm 	• Ti6Al4V • CP Ti plates	SEM, EDX Osteoblasts (OCT-1) MTT	 enhancement of Ca/P deposition Osteoblast will grow better 	 C. Symietz et al. Acta Biomaterialia, 2010 H. Wang et al. Biomed Mater, 2010 A.Y. Vorobyev & C. Guo, Applied Surface Science 2007; 253:7272–7280

* Nd:YAG laser is used also for dentin ablation (formation of dentin craters): A. McDonald et al. Biomaterials 2002; 23:51-58




Femtosecond lasers


H.Wang et al. Biomed Mater, 2010;5:054115

- 50 fs, 800 nm, 3.3-12.5 J/cm², 1000 Hz
- Irradiation of CP Ti plates in SBF (simulated body fluid)
- SEM, EDX studies: Ca/P deposition was enhanced.
- Osteoblast (OCT-1) MTT studies: cells were growing faster, more filopodia were observed.
- Double effect: increased roughness and the deposition of Ca/P salts improved cell attachment and proliferation.

- A.Y. Vorobyev & C. Guo, Applied Surface Science 2007; 253:7272-7280
- 65-fs, Ti:sapphire laser, 800 nm, 1 mJ, 1 kHz
- Several micro- and nanostructures can be produced on Ti plates
- Parallel hollows will form
- 1–15 μm micro roughness
- Smooth surfaces and 10 nm diameter spherical nanostructures

 $\label{eq:F} F=0.067 \ J/cm^2. \ (a) \ after \ 40 \ pulses \ (b) \ after \ 100 \ pulses \ (c) \ After \ 400 \ pulses \ (d) \ magnification$

Advantages of laser modifications

- Lasers are used more and more for surface modifications (Bauerle, 2000; Joob-Fancsaly et al., 2000).
- These techniques must be further improved, since medical applications require high accuracy in both mechanical and chemical characteristics.

• Advantages:

- Precision in the wavelength of the light
- Wide range of wavelength
- High energy density ranges
- Focusing or widening the light beam
- Possibility of pulse mode and adjustment of FWHM
- Advantage of excimer laser treatment compared to the others: the ultraviolet (UV) wavelength range has a sterilizing effect (*Bereznai et al.*, 2003).

Main topics

1. Introduction, Faculty of Dentistry, research program

- Biomedical sciences and our research field
- Main characteristics of dental implants
- Surface aspects of biomaterials, biorecognition

2. Surface modifications enhancing biointegration/osseointegration

- Physical-chemical surface modifications
- Laser ablation of Ti surfaces, background/literature overview

3. Laser ablation of Ti discs

- Bereznai et al., *Biomaterials,* 2003
- A. Györgyey et al., *MSEC*, 2013:
 - SEM, AFM and XPS studies
 - In vitro cell culture experiments MG63 osteoblast cells

Biomaterials, 24; (23): 4197-4203, 2003

Available online at www.sciencedirect.com

Biomaterials

Biomaterials 24 (2003) 4197-4203

www.elsevier.com/locate/biomaterials

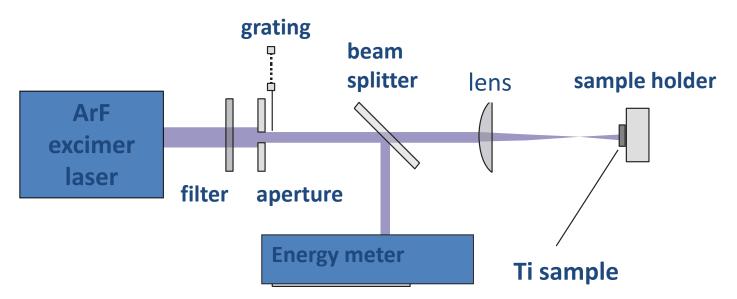

Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material

M. Bereznai^{a,*}, I. Pelsöczi^b, Z. Tóth^c, K. Turzó^b, M. Radnai^b, Z. Bor^a, A. Fazekas^b

⁴ Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9., Szeged, H-6720, Hungary ^b Department of Dentistry and Oral Surgery, University of Szeged, Tisza Lajos krt 64., Szeged, H-6720, Hungary [°] Research Group on Laser Physics, Hungarian Academy of Sciences, Dóm tér 9., Szeged, H-6720, Hungary

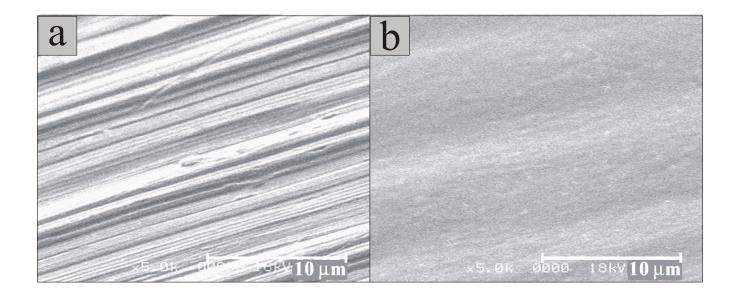
Received 21 December 2002; accepted 8 April 2003

Cooperation with Department of Optics and Quantum Electronics, Faculty of Science and Informatics



Excimer laser surface modification: polishing and ablation

Laser (Lambda Physics EMG 201):

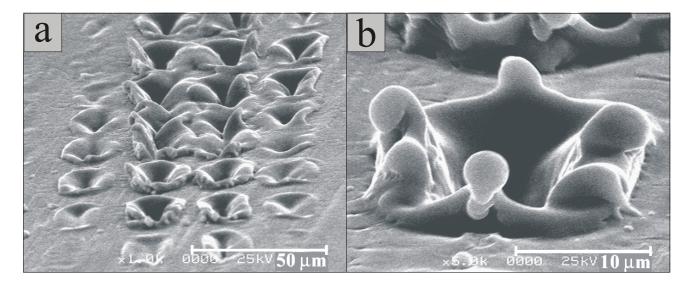

Laser:

wavelength 193 nm (UV) pulse duration: 18 ns pulse energy: 100 mJ <u>Sample</u>: CP grade 1 Ti-disc 8 mm Ø, 1.25 mm thick

SEM image of laser polished Ti disc

Non-irradiated

Laser-polished

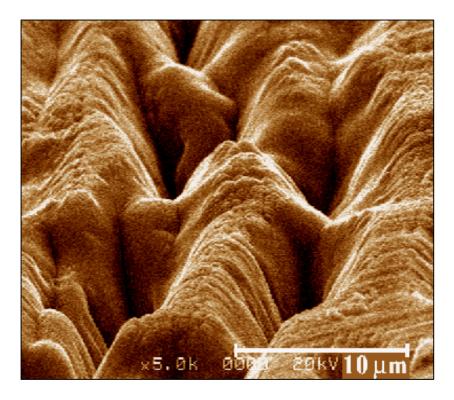

5000 x magnification, 10 laser pulses, 3.5 J/cm² incident fluence

<u>Result</u>: Ti sample with $R_a < 1$ mm can be effectively polished by homogenous 3-5 J/cm² fluence laser.

SEM images of 18 ns ArF- laser ablated Ti surface

1000 x magnification

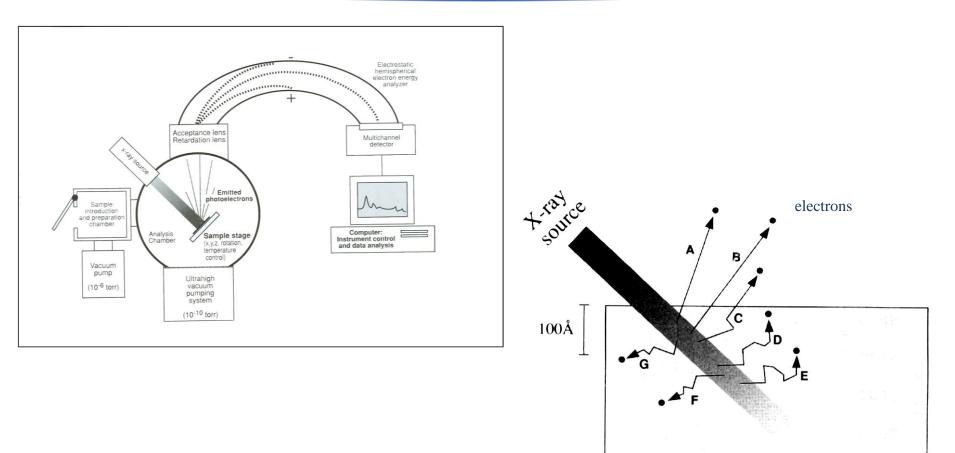
5000 x magnification


250 laser pulses, 8.5 J/cm² incident fluence

<u>**Result</u>**: Enlarged contact area, holes of about 20x10 μ m, but fragile rims were formed around the holes (due to extensive evaporation and melting, plasma is formed). Inconvenient effect, as the rims may break away from the surface.</u>

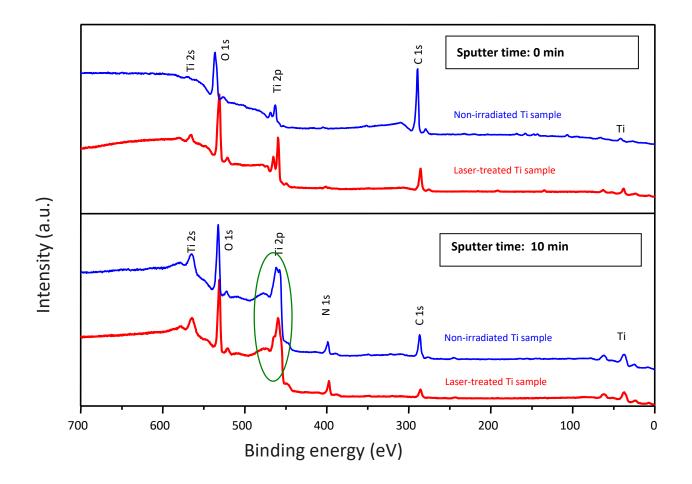
SEM image of the surface modifications induced by 0.5 ps KrF excimer laser pulses

Results:


- Enlarged contact area
- Cleaner surface (XPS, XRD)
- Increased thickness of TiO₂

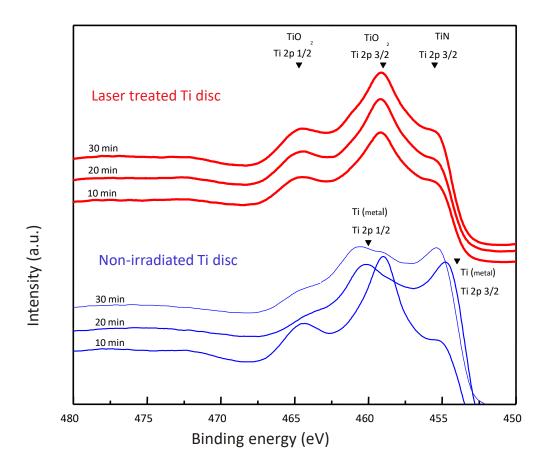
Laser ablation with KrF excimer laser (λ = 193 nm), pulse duration: 0.5 ps, 5000 x magnification, 1000 laser pulses, 2.4 J/cm² incident fluence.

X-ray photoelectron spectroscopy (XPS or ESCA)


Ar⁺ bombardment:

~ 10 nm of material was removed in 10 min.

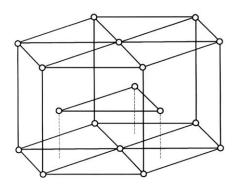
X-ray photoelectron spectroscopy (ESCA) survey spectra of non-irradiated and ArF laser polished Ti discs

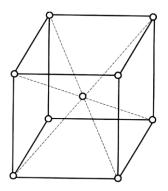


The laser cleans the surface and ...

High-resolution XPS spectra of non-irradiated and ArF laser-treated titanium samples

increased the thickness of the TiO₂ layer.

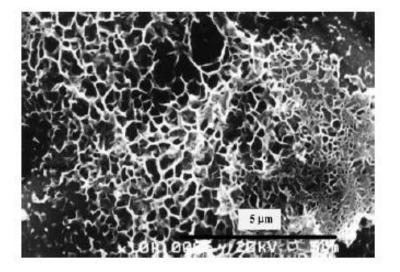



X-ray diffraction spectra of non-irradiated and irradiated Ti samples

The original crystalline structure is preserved.

 α - Hexagonally Closed Packed

 β (Body Centered Cubic), above 1158 K



Ca-P coating of Ti surface

Colloid Polym Sci (2005) 283: 587–592 DOI 10.1007/s00396-004-1188-y

ORIGINAL CONTRIBUTION

Márta Szekeres Gabriella Fodor András Fazekas Márta Radnai Kinga Turzó Innre Dékány Formation of octacalcium phosphate by heterogeneous nucleation on a titania surface

SEM image of calcium phosphate nucleated on the surface of a titanium plate pretreated by laser ablation and heating at 450 °C for 3 days.

Cooperation with Dept. of Colloid Chemistry, Faculty of Science and Informatics, University of Szeged

- To investigate the effect of the Nd:YAG and excimer laser ablation on Ti implant surface and to compare with a typical dental implant surface (acid etched and sand blasted)
- Morphological (scanning electron microscopic-SEM and AFM images) and chemical composition studies (XPS)
- Testing the response of the biological environment:
 - In vitro cell culture studies
 - Investigation of the attachment and proliferation of human MG63 osteoblast-cells

Materials and methods

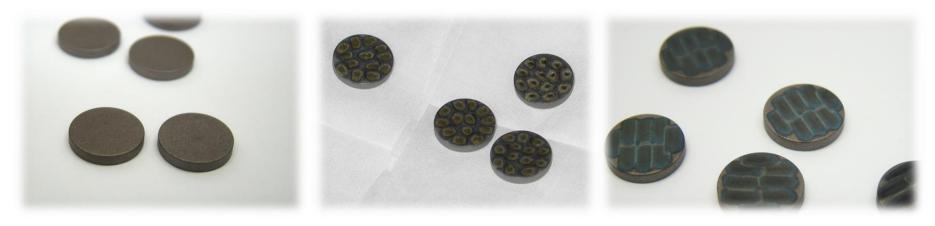
Samples:

- Acid etched and sand blasted surfaces, 9 mm Ø and 1.5 mm thickness
 Denti[®] System Ltd. (Hungary) CP grade 4 titanium discs.
- Samples were cleaned ultrasonically in acetone and then 70% ethanol, each for 15 min, and subsequently rinsed in ultrapure water.
- Laser treatment ablation at Department of Optics and Quantum Electronics, Faculty of Science and Informatics
 - Q-switched Nd:YAG laser: λ= 532 nm, pulse energy 40 mJ, fluence 1.3 J/cm², FWHM: 10 ns, 200 pulses
 - KrF excimer laser: λ = 248 nm, fluence 0.4 J/cm², FWHM: 18 ns, 2000 pulses

Investigation methods:

Surface science methods

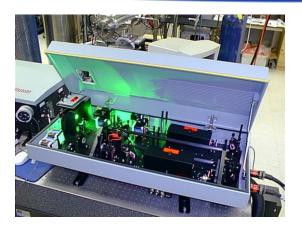
- Optical microscope, SEM, AFM, XPS
- *In vitro* cell culture: attachment (24 hours) and proliferation (72 hours) of human MG63 osteoblast-cells by dimethylthiazol-diphenyl tetrazolium bromide (MTT) and Alamar Blue (AB) methods.


Laser treatment of Titanium surfaces

Laser type	Wavelength	Fluence	FWHM	Nr. of pulses
Nd:YAG	532 nm	1.3 J/cm ²	10 ns	200
KrF excimer	248 nm	0.4 J/cm ²	18 ns	2000

Denti -control

Nd:YAG laser


Excimer laser

Use of the applied lasers

Nd:YAG laser

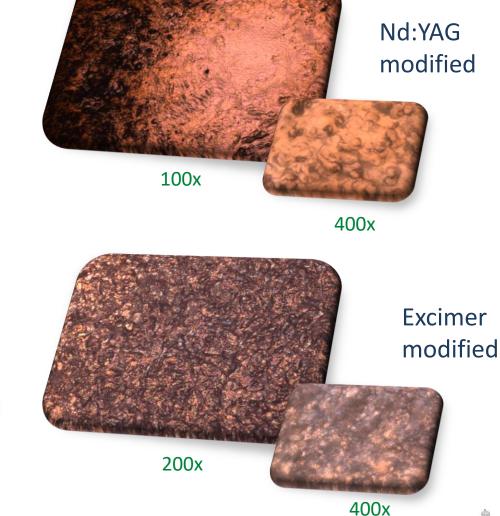
- Solid state laser:
 - Nd-Neodimium; Y-Yttrium; A- Aluminum; G-Garnet crystal
- 1964, Bell Laboratory, J.E. Geusic
- Typically infrared range: 1064 nm, but frequency doubling: 532 nm (355 or 266 nm)
- Pulse and continuous mode
- FWHM: 10-25 ns

Applications:

- Industry: etching and engraving surfaces
- Ophthalmology: glaucoma treatment, retina photocoagulation
- Oncology: skin tumor removal
- Cosmetics: treatment of cellulitis, removal of pelage
- Oral medicine, dentistry: soft tissue operation, gingivectomy, periodontal applications

Excimer laser

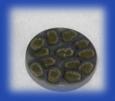
- Pulse and gas laser family
- 1970, (Xe dimer) N. Basov, VA Danilychev, YM Popov, Lebedev Physical Institute, Moscow
- EXCIted diMER = excited molecule with two atoms
- Noble gas-halogen gas mixture (ArF, KrF, XeCl, etc.) electric discharge will form excited state noble gas-halid molecules.
- Ultraviolet range: $\lambda = 126-351$ nm; frequency: 100 Hz; UHWM: 10 ns
- Advantages:
 - Biological and organic materials absorb it well
 - Does not burn and cut the material, it disrupts the molecular binding of surface tissues, the material will be atomized, ablation will occur (material removal) without formation of heat
- Applications:
 - Micro fabrication of organic materials (polymers)
 - Photolithography, fabrication of chips
 - Precision eye surgery (LASIK), vein surgery
 - Dermatological applications: psoriasis, vitiligo, etc. treatment



Optical microscope images

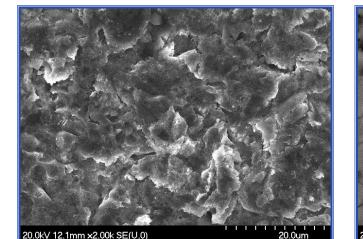
Nikon Eclipse 80i, Japan Faculty of Dentistry

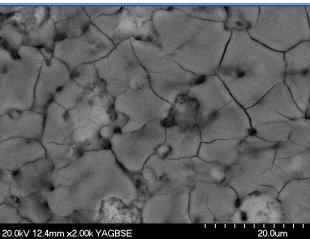
Control surface



200x

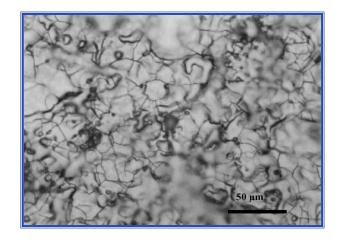
SZÉCHENYI 202




Scanning Electron Microscope images Nd:YAG laser ablation

SEM: Hitachi S4700, Japan

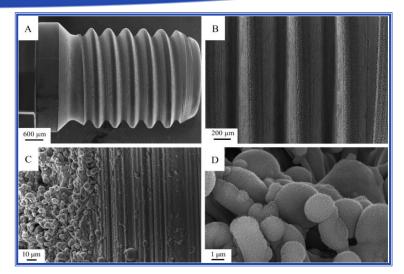
Control: Acid etched, sand blasted

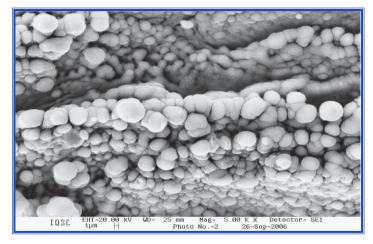


Nd:YAG: lamellar structure, cracks, rims and holes 1300 mJ/cm², 200 pulses

Similar result:

- M.W. Turner et al. Applied Surface Science 2005;247:623-630
 - Micro cracks
 - 1385 mJ/ cm², 25 A, 25 kHz, 50 mm/s
 - 500x magnification

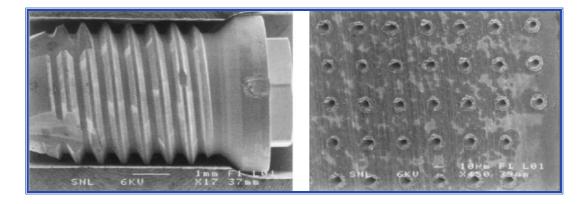



Surfaces modified with Nd:YAG lasern

Most often Nd:YAG laser is applied for modification of CP Ti dental implants.

- SEM, AFM, XPS and animal experiments prove their effectiveness (torque tests and histomorphometry).
- R. Brånemark et al. Nanomedicine: Nanotechnology, Biology and Medicine 2011; 7:220-227
- R.S. Faeda et al. Braz Oral Res (Implantology), 2009, 23(2):137-43
- R.S. Faeda et al. *J Oral Maxillofac Surg*, 2009, 67:1067-1715

Brånemark et al., 2011


R.S. Faeda et al., 2009 5000x magnification

Surfaces modified with Nd:YAG lasern

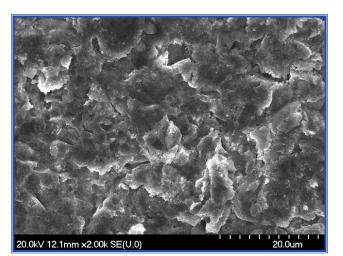
- C. Hallgren et al. Biomaterials 2003; 24:701-710
- M. Marticorena et al. Journal of Physics: Conference Series 2007; 59:662-665

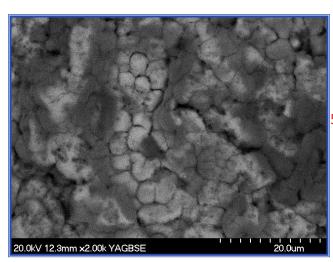
C. Hallgren et al., 2003

Disadvantages:

During Nd:YAG laser ablation due to the multiple illumination rims will form on the Titanium surface. Contamination will occur.

Gaggl et al., 2000; Pető et al., 2001, György et al., 2002

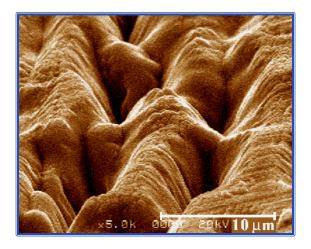




Scanning Electron Microscope images Excimer laser ablation

SEM: Hitachi S4700, Japan

Control: Acid etched, sand blasted

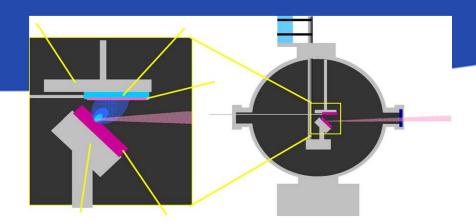


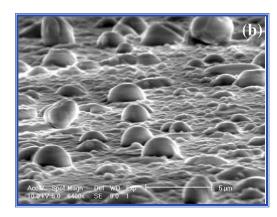
Excimer: rounded, almost uniform structures, 5–10 μm in diameter 248 nm 0,4 J/cm² 18 ns, 2000 pulses

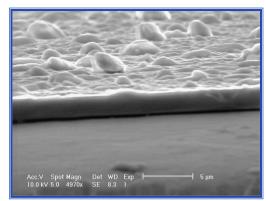
Comparison:

 M. Bereznai et al. Biomaterials, 2003, 24(23): 4197-4203

- The KrF laser used in 2003 (248 nm)
 FWHM was much shorter: 0,5 ps, pulse energy was 10 mJ, fluence was 2,4 J/cm² and 1000 pulses were applied.
- The samples were ablated under vacuum (10 Pa), to avoid plasma formation in air (prevents light absorption).

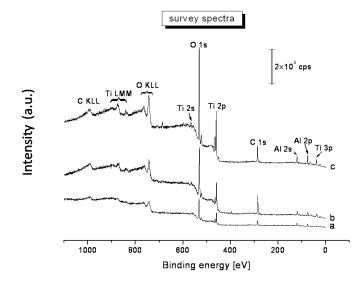



Pulsed Laser Deposition (PLD)with KrF excimer laser

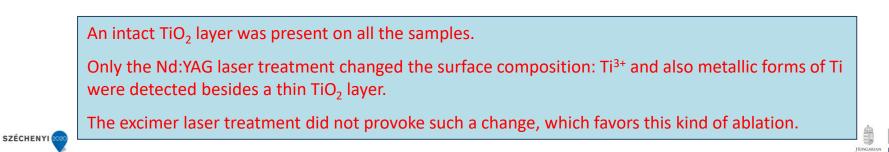

Excimer laser is rarely used for ablation of implants!

- T. Smausz et al. Appl. Phys. A, 2004; 79:1101-1103: ArF and KrF, PLD of tooth material
- Dinda et al. Acta Biomaterialia 2009;
 5:1821-1830: Pulsed Laser Deposition of HA on Ti6Al4V surface
- KrF excimer laser (Lambda Physik EMG 201 MSC)
 - 248 nm, 20 ns, 10 Hz
 - 45° incident angle on HA sample
 - 3 x 1 mm size of spot
 - Fluence: 3 J/cm²
- Results: the PLD and 300° C treatment gave a very clean, crystalline HA coating. It did not dissolve in SBF, very good attachment to the surface.

We did not find any publication investigating the response of osteoblasts on excimer-laser treated Ti implants.



Results of XPS measurements

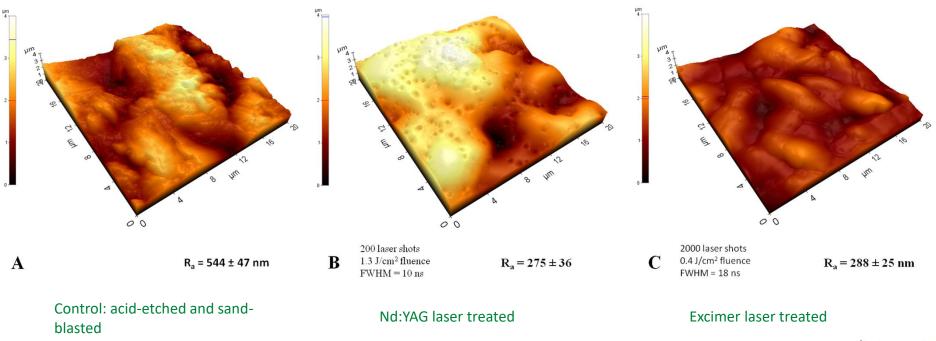

XPS: PHOIBOS 150 MCD 9, SPECS

Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics

- a) Control surface: acid etched and sand blasted Ti surface
- b) Nd: YAG laser modified
- c) KrF excimer laser modified survey XPS spectra.

High-resolution XPS spectra showing Ti 2p lines Deconvolution: at 454.7 and 456.5 eV new peaks!


(i) for the second sec


Results of AFM measurements (R_a –roughness)

PSIA XE-100 (PSIA Inc., South Korea)

 Lasers significantly decreased surface roughness.

SZÉCHENYI

In vitro cell culture studies

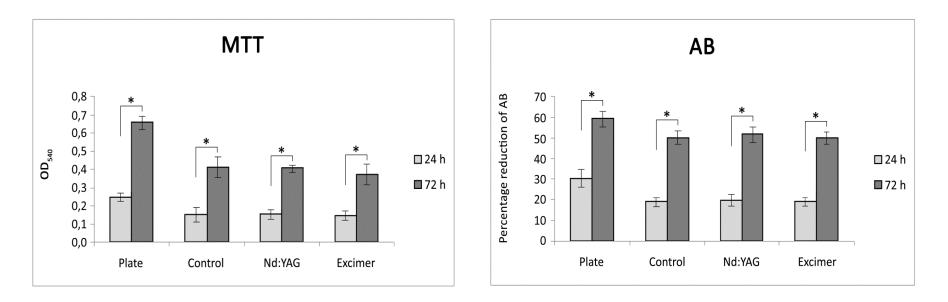
Testing the response of the biological environment

MG63 osteoblast cells (European Collection of Cell Cultures)

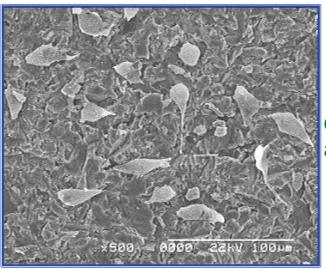
- Attachement (24 hours)
- Proliferation (72 hours) studies on the laser modified and non-treated (control) surfaces

Methods/assays:

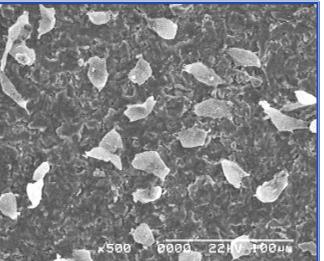
- MTT: dimethylthiazol-diphenyl tetrazolium,)
- AB: Alamar Blue
- ALP: alkaline phosphatase quantification
- SEM images



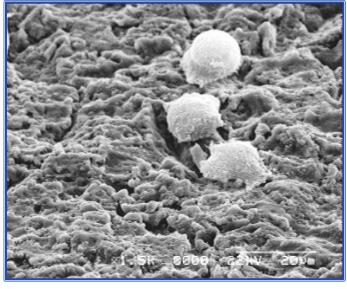
SZÉCHENYI 20


Cell culture results

- MG63 osteoblast cells attach and proliferate better on plate (positive control).
- MTT and AB measurements detected an increase in the number of cells between the 24- and 72 hour observations
- However, laser treatment did not affect cell attachment and proliferation significantly (ANOVA).



SEM images of MG63-cell attachment (24h)



Control: acid-etched and sand-blasted

SZÉCHENYI 2020

Excimer laser treated

Nd:YAG laser treated

Results, conclusions

- SEM: significant differences in morphology of the original and laser-irradiated Ti samples were found; excimer laser: uniformly rounded forms, for Nd:YAG laser rims and holes appeared.
- XPS: intact TiO₂ layer on every surface, for Nd: YAG in the original TiO₂ layer appeared forms of reduced titanium (Ti³⁺) and metallic form. Excimer laser ablation did not change the native TiO₂ layer, in contrary to the Nd:YAG laser!
- AFM: laser treatments significantly decreased the roughness of the surfaces (R_a).
- MTT and AB:
 - MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations;
 - however, laser treatment did not affect cell attachment and proliferation significantly

Roughness plays a significant role in determining the cell response and that the causes of implant failure are primarily not changes in the oxide on the Ti surface, but rather the appreciably more important biological and biomechanical factors !

Materials Science and Engineering C 33 (2013) 4251-4259

MATERIALS SCIENCE & ENGINEERING

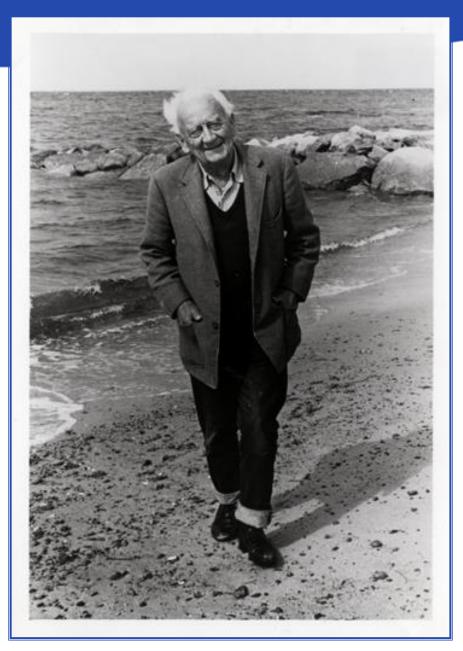
Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

Ágnes Györgyey ^a, Krisztina Ungvári ^a, Gabriella Kecskeméti ^b, Judit Kopniczky ^b, Béla Hopp ^c, Albert Oszkó ^d, István Pelsöczi ^a, Zoltán Rakonczay ^a, Katalin Nagy ^e, Kinga Turzó ^{a,*}

^a Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged, Hungary

^b Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary ^c Research Group on Laser Physics, Hungarian Academy of Sciences and University of Szeged, H-6720 Szeged, Hungary

^a Research Group on Laser Physics, Hungarum Academy of Sciences and University of Szegea, H-6720 Szegea, Hungary
^d Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary


^e Department of Oral Surgery, Faculty of Dentistry, University of Szeged, H-6720 Szeged, Hungary

Thank you for your attention!

Albert Szent-Györgyi

"Research is to see what everybody else has seen, and to think what nobody else has thought."

