

What did we learn about microcirculation using lasers

Ferenc Bari PhD, DSc professor University of Szeged Faculty of Medicine Department of Medical Phylics & Informatics

Lamelis 2019, Szeged, 4 July

Laser AND microcirculation (3736 papers) (mainly laser Doppler)

Citation to "Laser AND microcirculation"

Sum of Times Cited:80 946

. 1.	Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry By: Maniotis, AJ; Folberg, R; Hess, A; et al. AMERICAN JOURNAL OF PATHOLOGY Volume: 155 Issue: 3 Pages: 739-752 Published: SEP 1999	70	78	87	79	43	1138	54.19
2.	Biomedical photoacoustic imaging By: Beard, Paul INTERFACE FOCUS Volume: 1 Issue: 4 Pages: 602-631 Published: AUG 6 2011	104	131	139	141	43	749	83.22
3.	Dynamic imaging of cerebral blood flow using laser speckle By: Dunn, AK; Bolay, T; Moskowitz, MA; et al. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM Volume: 21 Issue: 3 Pages: 195-201 Published: MAR 2001	33	37	31	38	13	531	27.95
4.	Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin By: Falati, S; Liu, QD; Gross, P; et al. JOURNAL OF EXPERIMENTAL MEDICINE Volume: 197 Issue: 11 Pages: 1585-1598 Published: JUN 2 2003	22	29	31	12	7	527	31.00
5.	Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse By: Falati, S; Gross, P; Merrill-Skoloff, G; et al. NATURE MEDICINE Volume: 8 Issue: 10 Pages: 1175-1180 Published: OCT 2002	21	33	19	22	10	447	24.83

Visualization Treemap Number of results 25							PTICS L30 ecords	×	ŀ	lide
813 PERIPHERAL VASCULAR DISEASE	281 Hematology	189 Engineering biomedical	145 DERMATOLOGY HARMACOL PHARMACY		View Record		S J22 RADIOLOG NUCLEAR MEDICINE MEDICAL IMAGING		DGY R IE L G	
536 SURGERY	234 ophthalmology	167 MEDICINE RESEARCH EXPERIMENTAL	118 SPORT SCIENCES 110 CRITICAL CARE MEDICINE 100 MEDICINE GENERAL INTERNAL		92 BIOCHEN RESEARC METHOD	MICAL CH DS		IESIO	83 gast hepa	3 ASTROENT EPATOLOG
341	211 NEUROSCIENCES	ENDOCRINOLOGY METABOLISM			72 MULTIDISCI		NARY	66 BIOP	HYSI	56 RHEUN
PHYSIOLOGY	206 CARDIAC CARDIOVASCULAR SYSTEMS	146 CLINICAL NEUROLOGY			71 otorhinol		YNGOLO	bior		ULC I

The microcirculation

- The term microcirculation refers to the functions of the capillaries and the neighboring lymphatic vessels.
- 5% of circulating blood volume(250 ml) is present in the capillaries at any given time.
- This takes part into the exchange of nutrients, gases and waste products between the blood & tissues.

The microcirculation

Fig. 4. Labial microvascular characteristics in healthy patients (200X).

Over 10 billion capillaries with surface area of 500-700 square meters
Small volume of blood is exposed to larger surface area

Why is it important to know microvascular physiology & pathophysiology

- Almost all diseases (diabetes, cancer, hypertension, Alzheimer's disease, etc) have mircovascular components
- Experiences: skin, brain, nasal mucosa, inner ear...
- Brain gets ~ 750 ml/min blood, uses 20% O₂ from the body's consumption
- Brain tissue is extremely vulnerable
- Stroke is Nr. (2)-3 in respect to disabilities and death all over the world
- Dementia is linked to cererebrovascular diseases
- Perinatal asphyxia affects ~ 3-4 babies a year

LOCAL CONTROL OF BLOOD FLOW

A) Autoregulation – maintenance of constant blood flow to an organ in spite of fluctuations in BP.
 E.g. brain – auto regulation is best kidney – auto regulation is good skeletal muscle – auto regulation is poor

• **B) Active Hyperemia** - When any tissue becomes highly active [eg. Skeletal muscle during exercise]. the rate of blood flow through the tissue increases.

• C) Reactive hyperemia

When blood flow to a tissue is blocked for few seconds and then is unblocked, the flow through tissue increases almost 4-7 times normal. The excess blood flow lasts long enough to repay the tissue oxygen deficit that has occurred during occlusion.

Non-invasive Assessment of Skin Microvascular Function in Humans: An Insight Into Methods

MicrocirculationVolume 19, Issue 1, pages 47-64, 21 DEC 2011 DOI: 10.1111/j.1549-8719.2011.00129.x http://onlinelibrary.wiley.com/doi/10.1111/j.1549-8719.2011.00129.x/full#f4

Representative tracing of control postocclusive hyperemia (PORH) and thermal hyperemia (TH)

Stewart J et al. Am J Physiol Heart Circ Physiol 2004;287:H2687-H2696

©2004 by American Physiological Society

AMERICAN JOURNAL OF PHYSIOLOGY Heart and Circulatory Physiology

Two basic mechanisms that explain local control of blood flow **1. Myogenic theory** Increase in blood flow Stretches the vessel Contraction of vascular smooth muscle Decrease blood flow back to normal

Vasodilator metabolites ↓ O2 tension, ↑H, ↑ CO2 tension, ↑ Temperature, K+, lactate, Adenosine, Histamine

What can we study if examine microcirculation

Methods before the Laser Doppler

Intravital microscopy

Closed cranial window- intravital microscopy direct observation of cortical vessels

- Advantages:
- Physiological environment
- Many kind of vessel can be studied
- Disadvantages:
- Parenchymal circulation cannot be
- studied
- Limited dynamical follow-up
 - Q ~ ΔP (change in perfusion pressure)
 Q ~ r⁴ change in diameter
 Q ~ 1/η change in viscosity

Capillaroscopy

- Find a site where there is very little scattering
- 'Windows' (eye, nailfold, under tongue, lower lip)
- x5/x10 microscope objective
- Polarized light capillaroscope
- Aim to detect dichroic (sickled) red blood cells in sickle cell anaemia.

Capillaroscopy (Sub-lingual)

Advanced intravital microscopy

A-H Intravital fluorescence microscopy of the microcirculation of the striated muscle microcirculation in the skinfold of the Syrian golden hamster. Contrast enhancement with fluoresceinisothiocyanate (FITC)-dextran 150.000 allows for the analysis of blood perfusion in arterioles (A), capillaries (B) and venules (C). In vivo staining with rhodamine 6G allows for the detection of leukocyte (D) and platelet (E) endothelial cell interaction. Interstitial application of lowmolecular-weight FITC-dextran 4.000 (F) and fluorescently labeled latex particles (G) provides information on microlymphatic transport. Topical staining with bisbenzimide allows in vivo analysis of parenchymal cell apoptosis (H)

Henrik Thorlacius et al, 2003

Principle of fluorescence measurment

Emission-absorption spectrum of Fluo-4

Examples of fluorescence intravital microscopy in mouse tissue. Detection of neutrophils (yellow arrow), classical (blue arrow) and non-classical monocytes (white arrow) recruitment in a) exposed cremaster muscle b) exposed carotid artery bifurcation.

History

Marvin Lee Minsky 1927 - 2016

Electrode based techniques dominate Extracellular electrodes, patch clamp, sharp electrode

Calcium indicators developed The principle of **confocal imaging** was patented by Marvin Minsky in 1961 - *most of the excitation outside of focus* -*information cut by pinhole*

Winfried Denk

Two-photon excitation concept first described by *Maria Göppert-Mayer* in 1931.

Two-photon microscopy was pioneered by <u>Winfried Denk</u> in the lab of <u>Watt W. Webb</u> at Cornell University in 1990 - all light is taken: no pinhole

Laser scanning confocal microscopy

Confocal microscope

Detector: photomultiplier

Light source: laser Power Wavelength

Filters

Scanner

Two-photon excitation requires IR laser

Scattering ~ (wavelength)⁻⁴

IR penetrates tissue much deeper

Advantages of two photon imaging

- No out-of-focus fluorescence
- Better in depth resolution
- Less photobleaching of the dye
- Less photodamage of the dye
- Less phototoxicity for the tissue

Principle of two photon excitation

The potassium wave of SD causes vasoconstriction

C57BL/6 mice, n=6 Avertin (4 mg/kg) anesthesia Green: Assante Potassium Green-2 (75 μM) Red: Rhodamine dextrane (5 mg)

Potassium wave of SD causes arteriole constriction

Limitations of multiphoton imaging

- Two photon imaging has depth limit out of focus light (background) > 1000 mm *Theer, Hasan, Denk. Opt Lett. 2003*
- 2. Scanner frame rate is relatively slow compare to open field imaging
- 3. light with wavelength over 1400 nm may be significantly absorbed by the water in living tissue limits multiphoto excitation
- 4. IR lasers are expensive

Methods before the Laser Doppler

- Intravital microscopy, pletismography
- INDIFFERENT GAS METHODS
 - HYDROGEN CLEARANCE
- ISOTOPE METHODS
 - AUTORADIOGRAPHIC METHOD
 - INHALATION OF O¹⁵ or O¹⁵ LABELED CO₂
 - RADIOACTIVE (LATER COLORED) MICROSPHERES
- REGIONAL CEREBRAL BLOOD-FLOW MEASUREMENTS BY XE-133-INHALATION
- LATER TRANSCRANIAL DOPPLER SONOGRAPHY
- PET

Principles of Laser Doppler Flowmetry

- Laser Doppler flowmetry (LDF)
 - Method to assess the tissue microvascular perfusion
 - A laser beam is directed to an area of tissue.
 - Upon contact with red blood cells in the target tissue, light waves are reflected and scattered
 - Shifts in the frequency of laser light (Doppler shift)
 - Detected and received by a photodector.

Principle of laser Doppler flowmetry

Difference between single photon and two photon imaging

Winfried Denk and Karel Svoboda Neuron, Vol. 18, 351–357, March, 1997
Capillaries in the brain

Blood vessels are responsible for 25-30% of total brain volume

Capillaries: •diameter 6-7µm •at a distance of 40 µm •total lenght ~ 650 km

Personal history to laser Doppler **1989-90 Max Plank Institut, Bad Nauheim** Prof. K. Pireau and Prof. K. Pleschka skin microcirculation- PF 3 **1992- Albert Szent-Györgyi Medical Univ Dept of Physiology and Dept of Neurosurgery** brain, skin, cochlea, nasal mucosa 1994- PF 4000 1995-97: Wake Forest University, Bowman Gray School of Medicine, brain

EXPERIMENTAL STUDIES

Significance of the Rate of Systemic Change in Blood Pressure on the Short-Term Autoregulatory Response in Normotensive and Spontaneously Hypertensive Rats

Pál Barzó, M.D., Ferenc Bari, Ph.D., Tamás Dóczi, M.D., Gábor Jancsó, M.D., Mihály Bodosi, M.D.

Departments of Neurosurgery (PB, MB) and Physiology (FB, GJ), Albert Szent-Györgyi Medical University, Szeged, Hungary; and Department of Neurosurgery, University Medical School (TD), Pécs, Hungary

Laboratory Investigations

Dexmedetomidineinduced decrease in cerebral blood flow is attenuated by verapamil in rats: a laser Doppler study

Ferenc Bari PhD, Gyöngyi Horváth MD, György Benedek MD, PhD DSc

Advantages of LDF technique

- Highly sensitive
- Responsive to local blood perfusion and
- Versatile and easy to use for continuous real-time monitoring.
- Non-invasive
- Does not disturb the normal physiological state of the microcirculation
- The small dimensions of the probes have enabled it to be employed in experimental and clinical environments not readily accessible using other techniques.

LASEP DODDLED ELOWMETRY (LDF)

Representative tracing of control postocclusive hyperemia (PORH) and thermal hyperemia (TH)

Stewart J et al. Am J Physiol Heart Circ Physiol 2004;287:H2687-H2696

©2004 by American Physiological Society

AMERICAN JOURNAL OF PHYSIOLOGY Heart and Circulatory Physiology

Capillaries in the brain

The endothelium is the thin layer of cells that lines the interior surface of blood vessels. In the brain there are highly differentiated endothelial cells to perform specialized functions;

- Protection (blood-brain barrier)
- Selective permeability
- Regulation of transport

Total cross sectional area ~12 m² f

Closed cranial window- intravital microscopy direct observation of cortical vessels

- Advantages:
- Physiological environment
- Many kind of vessel can be studied
- Disadvantages:
- Parenchymal circulation cannot be studied
- Limited dynamical follow-up

Time course of ICBF changes during maternal hypercapnia (black bar) measured by cortical surface (\circ , n = 6) and intracortical (\bullet , n = 5) laser probes in fetal sheep at 110 dGAData are means \pm s.e.m.

Müller T et al. J Physiol 2002;539:957-967

The Journal of Physiology

2002 by The Physiological Society

A publication of The Physiological Society

LDF provided a means to follow functional activation and to analyse rhythmic components of microcirculation

Neurovascular coupling-cortical spreading depression endothelium-derived dilator factors are unlikely

to mediate CSD-induced hyperemia in the brain

Prof. Peter Goadsby-Pioneer in headache & Cerebral microcirculation

Original recordings of cerebral blood flow (CBF) responses (upper wave) and DC deflections (bottom wave) during the three series of CSD. Ten mg/kg of -NAME was given between the first and second sets of CSDs.

Simultaneous measurement of cortical reflection and CBF. (A) An image of the cortical surface, the location of slit used for imaging spectroscopy, the tip of LDF probe, and the reflection of its beam from the cortex.

Visual stimulation (2 sec)- black (3x2 sec)- red

Dov Malonek et al. PNAS 1997;94:14826-14831

Spreading depolarization

Depressed hyperemic responses

Representative experiment: old rat

Single point blood flow imaging

Originally single point measurement system, measuring doppler shift from moving RBCs (20Hz – 20KHz)

Scanning System

Builds up image point by point, slow

Applications of LDF

1. Post-operative monitoring of free tissue transfer

- Monitoring and quick recognition of disruption of flap perfusion reduces the flap failure.
- (Burn depth assessment)
- 2. Allergy patch testing, skin diseases research
- 3. Gastroenterology
 - To assess blood flow of the gastric mucosa and disorders or to measure the effect of treatment intervention
- 4. Cerebral Blood Flow
 - To assess of cerebral blood in head injury patients
- **5.** Pharmacology Trials
 - To assess the effects of topical or systemic vasoactive drugs on tissue blood flow

6. Tooth Vitality Testing

To assess the blood flow pulsation in the pulp capillaries

7. Laboratory animal studies

 For ocular, cerebral, cutaneous, auricular, splanchnic, and renal blood flow

Limitation of current LDF

- Currently LDF does not give an absolute measure of blood perfusion
 - Limiting factor in clinical setting
 - Not routinely used in health care

Neurovascular coupling and spreading depolarization in the injured brain

Dreier (2011) Nat. Med.

Draft of the arrangement of the setup

Synchronization of the respective illumination/image capture

Optical principles for multimodal imaging

Voltage sensitive dye loaded in a closed cranial window

Representative video for SD-related changes in VS dye fluorescence

Exp. code: imag55, SD1

Laser speckle contrast analysis

Average gray level (5x5 matrix): (I) Standard deviation: σ Speckle contrast: K

$$K = \frac{\sigma}{\langle I \rangle} \quad \Rightarrow \quad 1/\mathrm{K}^2$$

Particles with low motility→ high contrast
Particles with high velocity → low contrast
⇒ The velocity of particles is proportional with:
the decrease in speckle contrast
(time of exposure)

Acquired images

raw speckle image

flow map

Simultaneous imaging of CSD and the CBF response

Whole field analysis of the VS dye signal

Area terminally depolarized in various age groups

Young

Middle-aged

Aged

Whole field analysis of cerebral blood flow maps

Spreading depolarization

Spreading depolarization and tissue acidosis

Menyhárt et al., Sci. Rep., 2017

Methods

Method ① Traditional pH measurement	Method ² pH imaging
Small, open craniotomy	Closed cranial window (4 x 4 mm)
Implantation of pH-sensitive electrode	Loading with pH-sensitive dye
Laser-Doppler flowmetry	Laser-speckle contrast analysis
pH-sensitive DC- electrode electrode	1 ml 35mM NR, i.p.

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

University of Szeged, Faculty of Medicine, Faculty of Science and Informatics

Intracellular pH imaging

Representative image sequences (SD elicited during baseline)

Field of view: green reflectance)

Laser-speckle contrast analysis: Cerebral blood flow (CBF) Neutral red fluorescence: Intracellular pH

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

University of Szeged, Faculty of Medicine, Faculty of Science and Informatics
Representative recording: - DC potential - tissue pH - CBF

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

University of Szeged, Faculty of Medicine, Faculty of Science and Informatics

Research group of Cerebral blood flow and metabolism University of Szeged

Group of Experimental Neuroimaging

Principal investigator:

Dr. Eszter Farkas Technician: Post doc:

Dr. Dániel Zölei-Szénási

an: Undergraduate students:

Orsolya Viss Ádám Brzózka Tamás Kiss Orsolya M. Tóth Borbála Szepes Gergely Tóth Réka Tóth

Ákos Menyhárt

PhD students:

Prof. Ferenc Bari

Dr. Péter Hertelendy

Tamás Puskás

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

University of Szeged, Faculty of Medicine, Faculty of Science and Informatics

Real time measurementa window towards the dynamics of cerebrovascular regulation

Autoregulation-range and dynamics under various circumstances Rhythmic patterns in the microcirculation-vasomotion Neurovascular coupling