Microcirculation Imaging Techniques – TOMI lab

- Laser Doppler perfusion imaging (LDPI)
- Laser speckle contrast imaging (LSCI)
- Tissue viability imaging (TiVi)
- Photoacoustic Imaging (PAI)
- Optical coherence tomography (OCT)

Concentration map

Commercially available mHealth devices

Dermascope

Otoscope

Ophthalmoscope

Ultrasound

Mobile platform

NUI Galway OÉ Gaillimh

Mobile platform

TORING Tissue optics & microcirculation imaging

J. Biophotonics 1-4 (2010) / DOI 10.1002/jbio.201000050

Journal of

BIOPHOTONICS

LETTER Cellular phone-based photoplethysmographic imaging

Enock Jonathan* and Martin J. Leahy

Tissue Optics and Microcirculation Imaging (TOMI) Facility, National Biophc Department of Physics, University of Limerick, Ireland

Received 4 April 2010, revised 3 August 2010, accepted 3 August 2010 Published online 6 September 2010

Key words: photoplethysmography, biophotonics, optical imaging, cel

We present study results on visible light reflection photoplethysmographic (PPG) imaging with a mobile cellular phone operated in video imaging mode. PPG signal components around 0.1 Hz attributed to the sympathetic component of the heart rate, 1 Hz as the heart rate and 2 Hz as heart rate high order harmonic were quantified on the index finger of a healthy volunteer. The green channel reported PPG signals throughout the sampled area. The blue and red channel returned plethysmographic information, but the signal strength was highly position specific. Our results obtained with a cellular phone as the data acquisition device are encouraging, especially in the broad context of personal or homebased care and the role of cellular phone technology in medical imaging.

Spectral signature of Haemoglobin

Lal C, Leahy MJ. *Microcirculation* 23: 345–363, 2016.

Mobile platform

TORING Tissue optics & microcirculation imaging

J. Biophotonics 1-4 (2010) / DOI 10.1002/jbio.201000050

Journal of

BIOPHOTONICS

LETTER Cellular phone-based photoplethysmographic imaging

Enock Jonathan* and Martin J. Leahy

Tissue Optics and Microcirculation Imaging (TOMI) Facility, National Biophc Department of Physics, University of Limerick, Ireland

Received 4 April 2010, revised 3 August 2010, accepted 3 August 2010 Published online 6 September 2010

Key words: photoplethysmography, biophotonics, optical imaging, cel

We present study results on visible light reflection photoplethysmographic (PPG) imaging with a mobile cellular phone operated in video imaging mode. PPG signal components around 0.1 Hz attributed to the sympathetic component of the heart rate, 1 Hz as the heart rate and 2 Hz as heart rate high order harmonic were quantified on the index finger of a healthy volunteer. The green channel reported PPG signals throughout the sampled area. The blue and red channel returned plethysmographic information, but the signal strength was highly position specific. Our results obtained with a cellular phone as the data acquisition device are encouraging, especially in the broad context of personal or homebased care and the role of cellular phone technology in medical imaging.

Lal C, Leahy MJ. *Microcirculation* 23: 345–363, 2016.

Alexandrov et al. Nanoscale, 6, 3545-3549

Home monitoring of retinal disease

- AMD^(a) and DR^(b) leading causes of blindness
 - >40 million cases in US and Europe alone
 - Will double by 2020: demographics + diabetes
- Effective treatments exist, but burden huge and unsustainable
 - All actors want clinical need for treatment to drive visit schedule
 - However, after stabilization, necessary visit frequency varies by patient
 - So, TAE protocols constrained by need to forestall events/treat quickly
- Critical need: *Home* monitor that provides clinically useful information

Compact Imaging

- Patients monitor as often as they want, reducing anxiety
- Doctors see patients when clinical need exists
- Unnecessary visits eliminated, reducing burden on all
- And, outcomes should improve

(a) Age-related macular degeneration (b) Diabetic retinopathy

MR-OCT: one sensor, many applications

- Mobile health/fitness monitoring
 - Eye care/ophthalmology
 - Glucose concentration
 - Skin care/dermatology
 - Vital signs
- Security and NDT ^(a)
 - Personal authentication
 - Document verification
 - Production testing

- **MR-OCT** MR-OCT subdermal optical fingerprint profiling
- Key: MR-OCT suited to requirements
 - Noninvasive, subsurface
 - Sensitive, specific, fast

estructive test NUI Galway OÉ Gaillimh

Small, low cost, battery power

MR-OCT retinal thickness MR-OCT rat eye image

Compact Imaging

MR-OCT tissue image

MR-OCT

adhesive

curing

OCT uses low coherence

SLD

- interferometry to produce a two or three dimensional image of optical scattering from internal tissue microstructures.
- > OCT can provide both micro structural and functional information with high resolution and sensitivity
 - \succ High resolution (2-15 μ m)
 - > 3D imaging in scattering (2-3 mm) tissue
 - Non invasive "Optical Biopsy"

NUI Galway

90/10 х-у scanner Sample arm Detector

Reference arm

Commercially available OCT systems

Cirrus HD-OCT

T ILUMIEN

Skintell

Conventional clinic-scale OCT instruments, priced from €45,000 to over €120,000, were commercialized early in the last decade for use by ophthalmologists, dermatologist, cardiac surgeons

Compact imaging solution with MR-OCT

MR-OCT features

- Small form factor: About the size of a computer DVD read/write head
- Robust, cost-effective design: Virtually solid state, typical of handheld devices
- Low-operating power requirements
- Flexible "free space" optical architecture

CD ROM Pickup Unit

Replacing CD ROM Pickup Unit with MR-OCT

CD ROM Pickup head actuator

Voice coil motor (VCM) actuator used in CD pick up head to ensure the constant focus on the optical disc

Voice coil features

- Low operational voltage
- Long life
- Light weight
- Inexpensive

MR-OCT of Scotch tape with VCM

Multiple Reference Optical Coherence Tomography (MR-OCT)

MR-OCT is similar to conventional TD-OCT, except a partial mirror is placed very close to the reference mirror.

- The partial mirror causes the light to be reflected back and forth multiple times between the partial mirror and the reference mirror.
- Each reflection between the partial and reference mirrors is delayed by the round trip time between the two mirrors.

Co-registering MR-OCT beam with dermascope image

1000

cmOCT of the thumb for a 5x5x3 mm region

Zam et al., 2013. J. Biophoton. 6 (9), 663-667. McNamara et al., 2014, *J. Biomed. Opt. 18 (12), 126008*

Fingerprint Microcirculation

Nature Reviews | Rheumatology

Flavahan, N Nature Reviews Rheumatology, 11, 146–158 (2015) doi:10.1038/nrrheum.2014.195

Scaling rules for diffusive drug delivery in tumor and normal tissues

Baish et al.

PNAS | February 1, 2011 | vol. 108 | no. 5 | 1801

Principle of cmOCT

200 µm embedded capillary tube with flowing fluid

Excised section of Pig Skin

cmOCT of the thumb for a 5x5x3 mm region

Zam et al., 2013. J. Biophoton. 6 (9), 663-667. McNamara et al., 2014, *J. Biomed. Opt. 18 (12), 126008*

Correlation mapping OCT (cmOCT): Principle

Joey Enfield, Enock Jonathan, and Martin Leahy, "In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)," Biomed. Opt. Express 2, 1184-1193 (2011)

Correlation mapping OCT (cmOCT): Principle

Where M, N are the grid size

Correlation mapping OCT (cmOCT): Principle

Joey Enfield, Enock Jonathan, and Martin Leahy, "In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)," Biomed. Opt. Express 2, 1184-1193 (2011)

cmOCT

Correlation mapping
OCT
8 sequential frames
2-D correlation map average correlation
value for a square grid measuring 7x7

. 2011 Biomedical Optics Express 2 (5) 1184-1193 lonathan et al. 2011 J. Biophotonics 4 (5) Enfield, J

Results: cmOCT of the thumb for a 5x5x3 mm region

126008 Zam et al., 2013. J. Biophoton. **6** (9) , 663-667. McNamara et al., 2014, *J. Biomed*. Opt. **18** (12),

Tissue optics & microcirculation im

Tissue optics & microcirculation

Secure biometric access to smartphones

http://www.digitaltrends.com/mobile/canapple-hand-over-your-fingerprint-to-the-nsa/

Middle finger

Tissue optics & microcirculation imaging

Day 1 **Day 30**

Microcirculation Imaging Techniques – TOMI lab

- Laser Doppler perfusion imaging (LDPI)
- Laser speckle contrast imaging (LSCI)
- Tissue viability imaging (TiVi)
- Photoacoustic tomography (PAT)
- Optical coherence tomography (OCT)

Speed man

Concentration map

In vivo imaging of human forearm **T**using 40 MHz transducer

In vivo PA and high frequency ultrasound images of the human forearm for a 30.5 (length) x 14.1 (width) x 10 (depth) region using 40 MHz probe at 860 nm.

submitted to Journal of Investigative Dermatology, May 2014.

Comparison of 15, 21 & 40 MHz transducers

• Comparison of *in vivo* images of the human forearm acquired at the same location using 15 MHz, 21 MHz and 40 MHz transducer probes at 1064 nm.

21 MHz (rendered) 30.5 mm x 23 mm (l x w).

40 MHz (rendered) 30.5 mm x 14 mm (l x w).

Leahy et al., submitted to Journal of Investigative Dermatology, May 2014.

Comparison of 15, 21 & 40 MHz transducers

• Comparison of *in vivo* images of the human forearm acquired at the same location using 15 MHz, 21 MHz and 40 MHz transducer probes at 800 nm.

submitted to Journal of Investigative Dermatology, May 2014.

Visual Sonics Vevo® LAZR PAI System

- OPO pumped by doubled Nd: YAG 680-970 nm, 20 Hz repetition rate, 5 ns pulse width, 45 +/5 mJ pulse energy
- 532 nm, 680-970 nm, 1064 nm, and 1200-2000 nm
- Real-time coregistered US and PA images

NUI Galway OÉ Gaillimh

• Laser light delivery and Ultrasound (US) detection in single PA probe

40 MHz PA probe

- 256 linear transducer array
- 7 mm laser focus
- Lateral resolution 140 μ m

1951 USAF resolution test chart, 40 MHz, 860nm

7 mm

OCT: optical analogue of pulsed-wave ultrasound

J. Fujimoto, 2008

Materials & Methods

 The minimal lumen area (MLA) and minimal lumen diameter (MLD) were measured at the cross section with the smallest lumen area using FD-OCT.

• Reference lumen area (RLA) was measured at reference cross section with the largest lumen within 10 mm proximal or distal to MLA and before any side branch.

> **NUI Galway** OÉ Gaillimh

NinePoint_4.mp4

Intracoronary microcirculation

Human Coronary Sinus using the every frame CC mapping method.

(d and f) Cross-sectional OCT images obtained with zero pullback. Bold red arrows indicate the vessels. (e and g) Flow maps corresponding to (d) and (f) superimposed onto the respective OCT images. Flow regions are marked red.

Clinical OCT Systems in the world market

\$6,000,000,000 in equipment sales,
 \$10,000,000,000 in health care savings.

NUI Galway

OÉ Gaillimh

http://www.octnews.org/articles/6849556/the-ecosystem-

that-powered-the-translation-of-oct-

1/fulltext

http://www.ajo.com/article/S0002-9394(17)30419-

In Vivo cmOCT and Optical Clearing

Before Clearing

After Clearing

Region shown is a 3x3 mm region, before and after 40 min clearing *J. Biomed. Opt.* 2016, 0001; **21**(8):081212

In Vivo Human Optical Clearing

2 mm

OÉ Gaillimh

 $T = 40 \min$

J. Biomed. Opt. 2016, 0001; **21**(8):081212

Label-free Imaging Domains

Conventional microscopy

Detector

One intensity value at each point of the image

srSESF microscopy

Spectral detector

Axial spatial frequency profile at each point of the image

 $x_1 x_2 x_3$

Structural features at points x_1 , x_2 , x_3 are unresolvable

Structural features at points x_1 , x_2 , x_3 can be resolved

Nature Scientific Reports 5 13274

sSESF approach

Imaging of 2D lateral structure with size beyond the diffraction resolution limit.

480

nm

491

470

Size of each element of the lateral structure 600nm x 600nm, in 2 times smaller than diffraction resolution limit. Size difference in axial structure is 10 nm.

 λ = 1300 nm, Δλ=140 nm NA = 0.5, R = 1590

460

Ht (rri)

3000

2800

1800

600

230

Dual Plasmonic Gold NanoStars

- Bimetallic configuration:
 - Silver has superior optical properties but is prone to oxidation
 - Forms FCC crystal with similar lattice constant as gold (capable of forming divisible shell geometry)
- Multibranched gold nanostars synthesised by using Ag as shape directing agents
- Synthesised nanostars displayed LSPR band in NIR

- Precursor HAuCl₄ & Silver nitrate
- Reducing agent Ascorbic acid

Nanobiophotonics Group School of Physics

DPGNS – *In vivo* Photothermal Therapy

PA images of tumour administered with DPGNS followed by 1064 nm laser irradiation (A), tumour administered with only DPGNS (B); PA amplitude plot (C) for (A) and (B). Notice that the DPGNS retained in the tumour at Day 3 with optical properties intact even after laser exposure (0.5 W/cm² for 10 mins.)

Nanobiophotonics Group School of Physics

STARSTEM

This is our eight Biophotonics and Imaging Graduate Summer School. It is an important opportunity for graduate students in 2020 to access the kind of close contact with leading professors that only this kind of environment facilitates. Tutors for BIGSS 2020 include:

Steve Jacques (Tufts)- Tissue optics and modelling
Wei Chen (Oklahoma) – Photothermal therapy and immunology
Paola Borri (Cardiff) – Advanced Light Microscopy.
Caroline Boudoux (Montreal) – Endoscopy
Elizabeth Hillman (Columbia)- High-speed optical imaging and microscopy of in-vivo brain function.
Stephen Boppart (Urbana-Champaign)- Optical coherence tomography
Sergio Fantini (Tufts)- Diffuse optics and applications to tissue oximetry and non-invasive brain studies
Brian Wilson (Dartmouth)- Photo Medicine, Radiation Medicine and Nano Medicine
Paul Beard + Ben Cox (London) – Photoacoustic Imaging

http://tomi.nuigalway.ie; BIGSS@nuigalway.ie

Deadline: May 16th

The international society for optics and photonics

Take away

• Smallest is 1/200 of the depth

-BUT sensitivity to smaller is possible

- Light penetration is really about scattering
- OCT decouples width from depth resolution
- FDOCT Noise advantage
- H2020 TOPIC : Nanotechnologies for imaging cellular transplants and regenerative processes in vivo
 - €6M question

Summary

- In vivo / Ex vivo
- Scattering or non-scattering tissue?
- Depth versus resolution
- Speed frames per second motion?
- Functional flow, oxygenation, molecular sensitivity $TiVi_{index} = 1.0$
- Sub-resolution content/activity
- Fit for purpose

NUI Galway OÉ Gaillimh

Imaging depth and resolution

NBIPI: Tissue Optics and Microcirculation Imag

TOMI Team:

Head of group Prof. Martin Leahy Prof. Steve Jacques (adjunct) Prof. Valery Tuchin (adjunct) Dr Sergey Alexandrov Dr Paul McNamara Dr Nandan Das Dr Yi Zhou Dr Vijaya Raghavan Rajib Dey Seán O'Gorman

Aedán Breathnach Anand Arangath Soorya James Aaron Croke Kai Neuhaus Cerine Lal Gillian Lynch

Alumni:

Dr Jim O'Doherty, Snr. PET Physicist, King's Hospital London Dr Neil Clancy, Research Fellow, Imperial College London Dr Joey Enfield, Senior Java Developer, Fexco Dr David Connolly, Assistant Professor, University of Aalborg Dr Anne-Marie Henihan, Research Fellow, University of Limerick Dr Emmanuel Pican, Lecturer ,CIT Dr Susan Daly, Research Fellow University of Limerick Dr Dennis Warncke Dr Paddy Finn, Crystal Energy Dr Paul McNamara, NUIG - Compact Imaging Dr Xin Gao, University of Kentucky Dr Marie-Louise O'Connell, Irish Medicines Board Dr Brian Kelleher, Lecturer, DCU Dr Haroon Zafar, Galway University Hospitals

Dr Roshan Dsouza, Urbana-Champaign

Collaborators: Fujifilm-VisualSonics, Inc. St. Jude Medical, Inc. Compact Imaging , Inc. Wheelsbridge AB iThera GmBh

This is our seventh Biophotonics and Imaging Graduate Summer School. It is an important opportunity for graduate students in 2018 to access the kind of close contact with leading professors that only this kind of environment facilitates. Tutors for BIGSS 2018 will include:

Steve Jacques (Tufts)- Tissue optics and modelling
Irving Bigio (Boston)- Nonlinear optics in spectroscopy and microscopy
Paola Borri (Cardiff) – Advanced Light Microscopy.
Caroline Boudoux (Montreal) – Endoscopy
Elizabeth Hillman (Columbia)- High-speed optical imaging and microscopy of in-vivo brain function.
Ton van Leeuwen (Amsterdam)- Optical coherence tomography
Sergio Fantini (Tufts)- Diffuse optics and applications to tissue oximetry and non-invasive brain studies
Brian Pogue (Dartmouth)- Optics in Surgery & Radiation Therapy - photochemistry/radiochemistry
Daniel Razansky (Munich) – Optoacoustic Imaging

http://tomi.nuigalway.ie; BIGSS@nuigalway.ie

Deadline: May 16th

The international society for optics and photonics

