

LASERS IN UROLOGY


Mártin Zagorac MD, István Papos MD, Őry-Tóth Csaba MD

University of Szeged

Department of Urology

LAMELIS 2019

LASERS IN UROLOGY

- > 1960 Maiman visible laser light
- 1966 Parsons used pulsing ruby laser on canine bladder
- 1968 Mulvany fragmented urinary stone using ruby laser
- 1980 CO2 laser for condyloma therapy
- ▶ 1982 pulsed dye laser for urolithiasis
- 1990: modern era of lasers in urology, application in BPH therapy

DIFFERENCES BETWEEN LASER AND NATURAL LIGHT

- Coherence (all photons are in one phase)
- Collimation (photons travel parallel with no divergence)
- Monochromaticity (photons have the same wavelenght)

Surgeons currently using laser beam 4 diffrent effects

- ► Thermal
- Mechanical
- Photochemical
- Tissue welding effects

Phototermal effect

- > The most common utilization, whereby light energy is absorbed and transformed into heat
- Coagulation: tissue temperature is less than 100 C
- > Vaporization: tissue temperature is higher than 100 C

Photomechanical effect

- ▶ When a very high power density is directed at an urinary calculus
- This creates a plasma bubble that swiftly expands and acts like a a sonic boom to disrupt the stone along stress lines

Photochemical effect refers to the selective activation of a specific drug, which may be administered systemically but is taken up in selected tissues

Tissue-welding effect is derived by focusing light of a particular wavelenght to induce collagen crosslinking

- Depend on:
 - ► The structure of the tissue
 - ► Wavelength of the laser
 - Energy of the laser
 - Using mode of the laser (pulsing/continuous)
 - Handling technique of the laser fiber

LASER TYPES USING IN UROLOGY

- Nd:YAG (Neodymium)
- KTP:YAG (potasium titanyl phosphate)
- Diode lasers
- ► Ho:YAG (Holmium)

THE TISSUE PENETRATIONS OF THE LASERS

- ► Nd YAG: 10 mm
- ► Ho YAG: 0.4 mm
- ► KTP: 0.8 mm
- ► Diode: 5 mm
- ► CO2: 0.02 mm

NEODYMIUM: YTTRIUM-ALUMINIUM-GARNET (YAG) LASER

- Nd:YAG is used commonly today because of ist efficiency
- ► Nd:YAG emits a beam at 1064 nm wavelenght
- Deep penetration. Around 10 mm, because this frequency is outside the absorption peaks of both hemoglobin and water
- > It has good hemostatic and cutting properties
- > non-contact ,,visual ablation of prostate" (VLAP)
- Interstitial laser coagulation of prostate (ILC)

KTP:YAG (GREEN LIGHT LASER)

- Passing the invisible Nd:YAG beam via a KTP crystals, doubles the frequency and halves the wavelenght from 1064 nm to 532 nm
- Its energy selective absorbed by haemoglobin, but not by water
- Penetration depht is 0.8 mm
- Very good coagulation effect (haemostasis)
- Noncontact use in prostate vaporisation

DIODE LASER

- ► More efficient and potentially cheaper than most other lasers now in use
- Their wavelength can be tuned
- These lasers currently are used for tissue coagulation and thermal treatment of solid organs, including the prostate

HOLMIUM:YAG

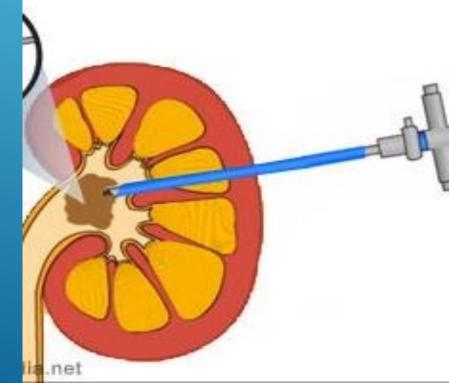
- > 2140 nm wavelenght
- > This laser energy is delivered most commonly in a pulsatile manner
- > It superheats water, this creates a vaporization bubble at the probe
- > The vapor bubble expands rapidly and destabilizes the molecules it contacts
- > Depht of penetration in tissue 0.4 mm (therefore the depht of necrosis and thermal damages are limited)
- Causes rapid coagulation of small vessels
- Requires contact with the tissue
- Useful for procedure of prostate, in lithitripsy, ablation of urothelial tumors and for urinary tract strictures

UROLOGICAL APPLICATIONS

Open and laparoscopic operations:

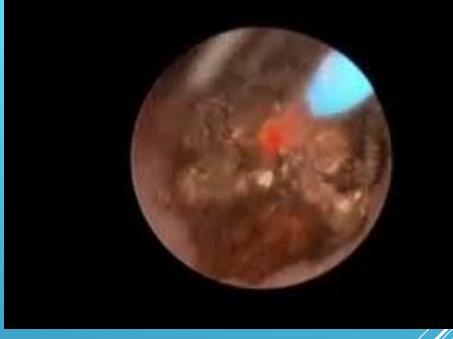
- Kidney, bladder, ureter, penis, testis
- Endoscopic operations
 - Kidney, bladder, ureter stones
 - > BPH interstitial laser therapy
 - > BPH vaporization, vaporesection, enucleation
 - Vapoincision of urethral strictures
 - Bladder tumor, ureter tumor, pyelon tumor vaporizations
 - Bladder tumor, pyelon tumor fotodynamic therapy (PDT)

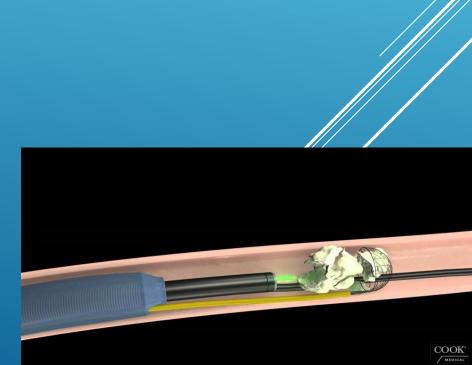
LASERS ON STONES

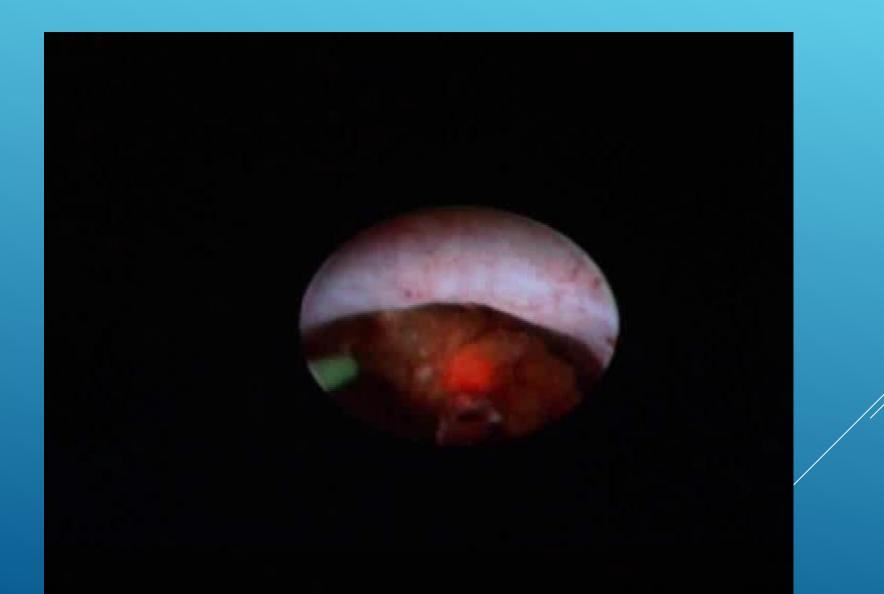

UROLITHIASIS

- Lasers are ideally suited for either retrograde ureteroscopy or percutaneous nephrolithotomy
- The mechanism of action occurs via plasma formation between the fiber tip and the calculus, which develops an accoustic shock wave that disrupts the stone along fracture lines

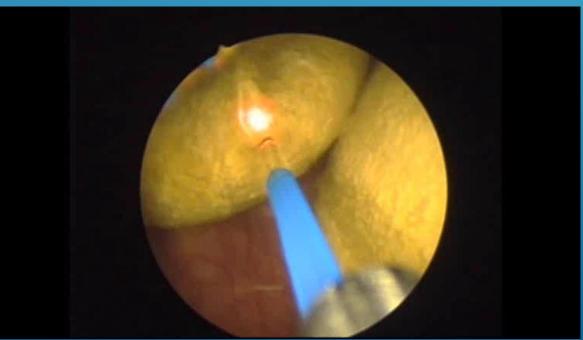
KIDNEY STONES


- Percutan nephroscopy or/and retrograd pyeloscopy
- Flexible and rigid instruments
- Mini PCNL




URETER STONES

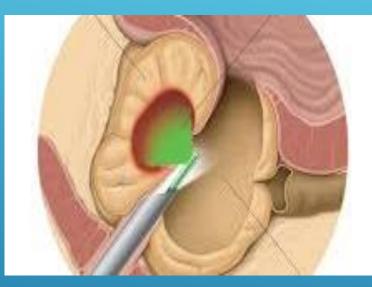
- Rigid, <u>semirigid</u>, flexible ureteroscope
- ► Thin laser fiber
- Pulsating holmium or thulium lasers



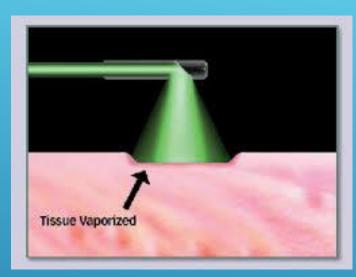
URETER STONES

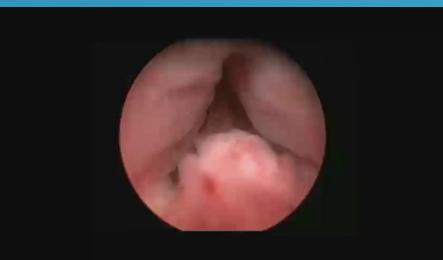
BLADDER STONES

- Laser cystoscope
- ► Larger stones
- Thicker laser fibers


LASERS ON SOFT TISSUES

- ► The 2 main tissue effects are
 - ► Coagulation
 - ► Vaporization


- Coagulation occurs when somewhat diffusely focused laser energy heats tissue to 100 C
- Proteins denaturate and necrosis is developed
- This process often initially results in oedema, which increases prostate volume transiently (may require short-therm Foley catheter)


- Vaporization occures when greater laser energy is focused and tissue temperatures reach as high as 300 C
- This causes tissue water to vaporize and results in an instantaneous debulking of prostatic tissue
- > The high-power (80 W) KTP laser is commonly used for its vaporization effects
- This procedure is associated with significantly less bleeding and fluid absorption than standard TURP

PROSTATE VAPORIZATION

APPROPRIATE LASERS FOR PROSTATE VAPORIZATION

- ▶ Nd YAG laser (1064 nm)
- ► Ho YAG laser (2140 nm)
- Green light (KTP) laser (532nm)
- Diode laser (980 nm)
- Those are the most appropriate, which are highly absorbeable in the hemoglobine, and poorly absorbeable in water.

- The Ho:YAG laser have been used to incise or enucleate prostate adenomas down from the capsule
- It is ideally suited for this task because it creates precise incisios, cuts by vaporizing tissue with adequate hemostasis, and leaves minimnal collateral damage

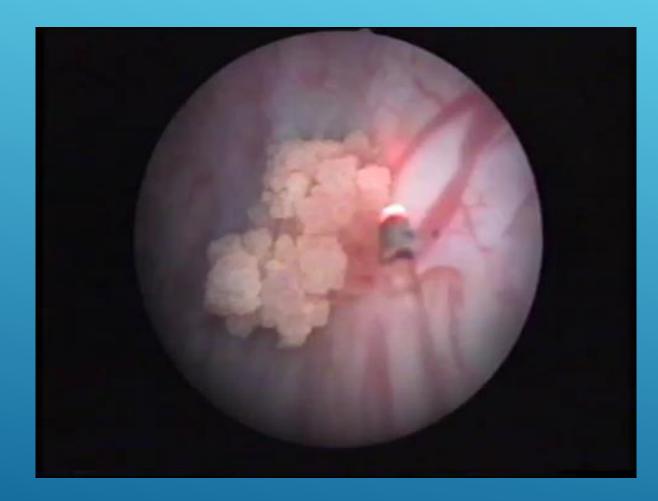
BPH ENUCLEATION

Laser modalities are safer than TURP in perioperative period (less bleeding and shorter hospital stay)

LASER TREATMENT OF UROTHELIAL MALIGNANCIES

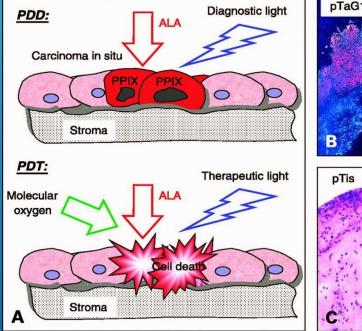
- Most commonly Ho:YAG and Nd:YAG are used in this setting
- ► Nd:YAG laser energy is used to coagulate and ablate with a thermal effect
- ► Ho:YAG is more precise with less of coagulative effect

LASER TREATMENT OF UROTHELIAL MALIGNANCIES

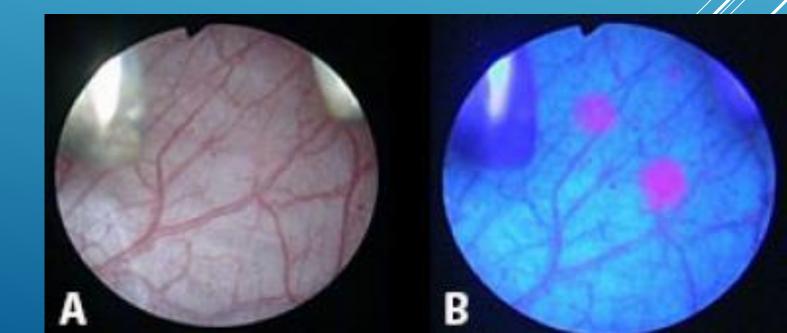

> Advantages

- Less bleeding
- Lower incidence of stricture formation
- Less postoperative pain
- Decreased need for anesthesia

Disadvantages


- No pathology specimen is available (obtain prior biopsy samples)
- The area of destruction is deep and not fully visualized

LASER TREATMENT OF UROTHELIAL MALIGNANCIES


LASER TREATMENT OF UROTHELIAL MALIGNANCIES

- Photodynamic therapy is another form of tumor ablation where systemically administered compound is absorbed by cancer cells and converted by laser light to a toxic compound
- This compound usually acts through oxygen radicals to destroy malignant cells
- > This is especially promising for TCC-carcinoma in situ

TARGET POPULATION FOR PDT

- Histologically confirmed high-grade non muscle invasive bladder cancer
- Considered intolerant/refractory to first-line BCG therapy

LASERS FOR UROTHELIAL STRICTURES

- > Nd:YAG, KTP and Ho:YAG lasers all have been used experimentally to vaporize fibrosus strictures of the urethra
- ► Ho:YAG is most likely the best type for this task

Treatment of a Bulbar Urethral Stricture using the Holmium Laser

LASER FOR ABLATION OF SKIN LESIONS

- Lasers offers minimal scarring and superior cosmetic results compared with other forms of cutaneous lesion resection
 - Comdyloma acuminata
 - Penile carcinoma in early stages (Tis,T1,T2)

THANK YOU FOR YOUR ATTENTION!

